Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.6 Q-5

Question Statement

For any point on a hyperbola, the difference of its distances from two fixed points (2,2)(2, 2) and (10,2)(10, 2) is 6. Find the equation of the hyperbola.


Background and Explanation

A hyperbola is defined as the locus of points where the absolute difference of distances from two fixed points (called foci) is constant. This property is mathematically represented as:

∣PFβˆ’PFβ€²βˆ£=2a,|PF - PF'| = 2a,

where P(x,y)P(x, y) is any point on the hyperbola, and FF and Fβ€²F' are the foci. The constant value, 2a2a, helps derive the equation of the hyperbola.

In this problem, the foci are located at (2,2)(2, 2) and (10,2)(10, 2), and the constant difference is 6.


Solution

Step 1: Write the hyperbolic condition

The given property of the hyperbola is:

(xβˆ’10)2+(yβˆ’2)2βˆ’(xβˆ’2)2+(yβˆ’2)2=6.\sqrt{(x-10)^2 + (y-2)^2} - \sqrt{(x-2)^2 + (y-2)^2} = 6.

Step 2: Square both sides to eliminate the square root

Squaring the equation:

((xβˆ’10)2+(yβˆ’2)2βˆ’(xβˆ’2)2+(yβˆ’2)2)2=36.\left(\sqrt{(x-10)^2 + (y-2)^2} - \sqrt{(x-2)^2 + (y-2)^2}\right)^2 = 36.

Expanding:

(xβˆ’10)2+(yβˆ’2)2+(xβˆ’2)2+(yβˆ’2)2βˆ’2((xβˆ’10)2+(yβˆ’2)2)((xβˆ’2)2+(yβˆ’2)2)=36.(x-10)^2 + (y-2)^2 + (x-2)^2 + (y-2)^2 - 2\sqrt{\left((x-10)^2 + (y-2)^2\right)\left((x-2)^2 + (y-2)^2\right)} = 36.

Simplify:

2x2+2y2βˆ’24xβˆ’8y+112βˆ’2((xβˆ’10)2+(yβˆ’2)2)((xβˆ’2)2+(yβˆ’2)2)=36.2x^2 + 2y^2 - 24x - 8y + 112 - 2\sqrt{\left((x-10)^2 + (y-2)^2\right)\left((x-2)^2 + (y-2)^2\right)} = 36.

Rearranging:

x2+y2βˆ’12xβˆ’4y+56βˆ’((xβˆ’10)2+(yβˆ’2)2)((xβˆ’2)2+(yβˆ’2)2)=18.x^2 + y^2 - 12x - 4y + 56 - \sqrt{\left((x-10)^2 + (y-2)^2\right)\left((x-2)^2 + (y-2)^2\right)} = 18.

Step 3: Substitute a variable and simplify further

Let:

t=x2+y2βˆ’4xβˆ’4y+8.t = x^2 + y^2 - 4x - 4y + 8.

Substituting tt:

(tβˆ’16x+96)t=tβˆ’8x+30.\sqrt{(t - 16x + 96)t} = t - 8x + 30.

Square both sides again:

(tβˆ’16x+96)(t)=t2+64x2βˆ’16xt+60t+900.(t - 16x + 96)(t) = t^2 + 64x^2 - 16xt + 60t + 900.

Expand and simplify:

t2βˆ’16xt+96t=t2+64x2βˆ’16xt+60t+900βˆ’480x.t^2 - 16xt + 96t = t^2 + 64x^2 - 16xt + 60t + 900 - 480x.

Cancel terms:

βˆ’96t+64x2+60t+900βˆ’480x=0.-96t + 64x^2 + 60t + 900 - 480x = 0.

Divide by 4:

16x2βˆ’120xβˆ’9t+225=0.16x^2 - 120x - 9t + 225 = 0.

Step 4: Replace tt with its expression

Substitute back t=x2+y2βˆ’4xβˆ’4y+8t = x^2 + y^2 - 4x - 4y + 8:

16x2βˆ’120xβˆ’9(x2+y2βˆ’4xβˆ’4y+8)+225=0.16x^2 - 120x - 9(x^2 + y^2 - 4x - 4y + 8) + 225 = 0.

Simplify:

16x2βˆ’120xβˆ’9x2βˆ’9y2+36x+36yβˆ’72+225=0.16x^2 - 120x - 9x^2 - 9y^2 + 36x + 36y - 72 + 225 = 0.

Combine like terms:

7x2βˆ’9y2βˆ’84x+36y+153=0.7x^2 - 9y^2 - 84x + 36y + 153 = 0.

Key Formulas or Methods Used

  1. Hyperbolic property:
∣PFβˆ’PFβ€²βˆ£=2a. |PF - PF'| = 2a.
  1. Squaring technique: Eliminates square roots to simplify the equation.
  2. Variable substitution: Used to manage complexity and simplify terms.

Summary of Steps

  1. Express the condition: Write the hyperbolic condition as:
(xβˆ’10)2+(yβˆ’2)2βˆ’(xβˆ’2)2+(yβˆ’2)2=6. \sqrt{(x-10)^2 + (y-2)^2} - \sqrt{(x-2)^2 + (y-2)^2} = 6.
  1. Eliminate square roots: Square the equation twice to simplify.
  2. Simplify and substitute: Use substitution to manage terms and simplify the resulting equation.
  3. Final result: The equation of the hyperbola is:
7x2βˆ’9y2βˆ’84x+36y+153=0. 7x^2 - 9y^2 - 84x + 36y + 153 = 0.