Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.7 Q-2

Question Statement

Write the equation of the tangent to the given conic at the indicated point.

i. 3x2=βˆ’16y3x^2 = -16y at the points where the ordinate y=βˆ’3y = -3
ii. 3x2βˆ’7y2=203x^2 - 7y^2 = 20 at the point where y=βˆ’1y = -1


Background and Explanation

In this problem, we are tasked with finding the equations of tangents to conics at specific points. The key steps involve:

  1. Identifying the points on the conic that satisfy the given conditions.
  2. Differentiating the conic equation to find the slope of the tangent at each point.
  3. Using the point-slope form of the equation of a line to find the equation of the tangent.

The point-slope form of a line is:

yβˆ’y1=m(xβˆ’x1)y - y_1 = m(x - x_1)

where mm is the slope of the tangent, and (x1,y1)(x_1, y_1) is the point of tangency.


Solution

i. 3x2=βˆ’16y3x^2 = -16y at the points where y=βˆ’3y = -3

  1. Find the points on the conic:
    Given the equation 3x2=βˆ’16y3x^2 = -16y, substitute y=βˆ’3y = -3:
3x2=βˆ’16(βˆ’3)β‡’3x2=48β‡’x2=16β‡’x=Β±4 3x^2 = -16(-3) \quad \Rightarrow \quad 3x^2 = 48 \quad \Rightarrow \quad x^2 = 16 \quad \Rightarrow \quad x = \pm 4

Therefore, the points on the conic are (4,βˆ’3)(4, -3) and (βˆ’4,βˆ’3)(-4, -3).

  1. Find the tangent at (4,βˆ’3)(4, -3):
    To find the tangent, replace x2x^2 by 4x4x and yy by 12(yβˆ’3)\frac{1}{2}(y - 3) in the equation 3x2=βˆ’16y3x^2 = -16y:
3(4x)=βˆ’16(12(yβˆ’3)) 3(4x) = -16\left(\frac{1}{2}(y - 3)\right)

Simplifying:

12x=βˆ’8(yβˆ’3)β‡’3x=βˆ’2(yβˆ’3)β‡’3x+2yβˆ’6=0 12x = -8(y - 3) \quad \Rightarrow \quad 3x = -2(y - 3) \quad \Rightarrow \quad 3x + 2y - 6 = 0

Therefore, the equation of the tangent at (4,βˆ’3)(4, -3) is:

3x+2yβˆ’6=0 3x + 2y - 6 = 0
  1. Find the tangent at (βˆ’4,βˆ’3)(-4, -3):
    Now, replace x2x^2 by βˆ’4x-4x and yy by 12(yβˆ’3)\frac{1}{2}(y - 3):
3(βˆ’4x)=βˆ’16(12(yβˆ’3)) 3(-4x) = -16\left(\frac{1}{2}(y - 3)\right)

Simplifying:

βˆ’12x=βˆ’8(yβˆ’3)β‡’3x=2(yβˆ’3)β‡’3xβˆ’2y+6=0 -12x = -8(y - 3) \quad \Rightarrow \quad 3x = 2(y - 3) \quad \Rightarrow \quad 3x - 2y + 6 = 0

Therefore, the equation of the tangent at (βˆ’4,βˆ’3)(-4, -3) is:

3xβˆ’2y+6=0 3x - 2y + 6 = 0

ii. 3x2βˆ’7y2=203x^2 - 7y^2 = 20 at the point where y=βˆ’1y = -1

  1. Find the points on the conic:
    Substitute y=βˆ’1y = -1 into the equation 3x2βˆ’7y2=203x^2 - 7y^2 = 20:
3x2βˆ’7(1)2=20β‡’3x2βˆ’7=20β‡’3x2=27β‡’x2=9β‡’x=Β±3 3x^2 - 7(1)^2 = 20 \quad \Rightarrow \quad 3x^2 - 7 = 20 \quad \Rightarrow \quad 3x^2 = 27 \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = \pm 3

Therefore, the points on the conic are (3,βˆ’1)(3, -1) and (βˆ’3,βˆ’1)(-3, -1).

  1. Differentiate the equation:
    Differentiating 3x2βˆ’7y2=203x^2 - 7y^2 = 20 with respect to xx:
ddx(3x2βˆ’7y2)=ddx(20) \frac{d}{dx}(3x^2 - 7y^2) = \frac{d}{dx}(20)

This gives:

6xβˆ’14ydydx=0β‡’14ydydx=6xβ‡’dydx=3x7y 6x - 14y \frac{dy}{dx} = 0 \quad \Rightarrow \quad 14y \frac{dy}{dx} = 6x \quad \Rightarrow \quad \frac{dy}{dx} = \frac{3x}{7y}

At the point (3,βˆ’1)(3, -1), the slope is:

dydx=3(3)7(βˆ’1)=9βˆ’7=βˆ’97 \frac{dy}{dx} = \frac{3(3)}{7(-1)} = \frac{9}{-7} = -\frac{9}{7}

At the point (βˆ’3,βˆ’1)(-3, -1), the slope is:

dydx=3(βˆ’3)7(βˆ’1)=βˆ’9βˆ’7=97 \frac{dy}{dx} = \frac{3(-3)}{7(-1)} = \frac{-9}{-7} = \frac{9}{7}
  1. Find the tangent at (3,βˆ’1)(3, -1):
    Using the point-slope form for the tangent line at (3,βˆ’1)(3, -1):
yβˆ’(βˆ’1)=βˆ’97(xβˆ’3) y - (-1) = -\frac{9}{7}(x - 3)

Simplifying:

7y+7=βˆ’9x+27β‡’9x+7yβˆ’20=0 7y + 7 = -9x + 27 \quad \Rightarrow \quad 9x + 7y - 20 = 0

Therefore, the equation of the tangent at (3,βˆ’1)(3, -1) is:

9x+7yβˆ’20=0 9x + 7y - 20 = 0
  1. Find the tangent at (βˆ’3,βˆ’1)(-3, -1):
    Using the point-slope form for the tangent line at (βˆ’3,βˆ’1)(-3, -1):
yβˆ’(βˆ’1)=97(xβˆ’(βˆ’3)) y - (-1) = \frac{9}{7}(x - (-3))

Simplifying:

7y+7=9x+27β‡’9xβˆ’7y+20=0 7y + 7 = 9x + 27 \quad \Rightarrow \quad 9x - 7y + 20 = 0

Therefore, the equation of the tangent at (βˆ’3,βˆ’1)(-3, -1) is:

9xβˆ’7y+20=0 9x - 7y + 20 = 0

Key Formulas or Methods Used

  1. Point-Slope Form of the Line:
    The equation of a line through a point (x1,y1)(x_1, y_1) with slope mm is:
yβˆ’y1=m(xβˆ’x1) y - y_1 = m(x - x_1)
  1. Differentiation to Find the Slope of the Tangent:
    For a curve f(x,y)=0f(x, y) = 0, the slope of the tangent at a point is:
dydx=βˆ’(partialΒ derivativeΒ withΒ respectΒ toΒ x)(partialΒ derivativeΒ withΒ respectΒ toΒ y) \frac{dy}{dx} = \frac{-\text{(partial derivative with respect to } x)}{\text{(partial derivative with respect to } y)}

Summary of Steps

  1. For part (i), substitute the given ordinate into the equation to find the corresponding x-values, then substitute into the equation for the tangent using the point-slope form.
  2. For part (ii), differentiate the equation of the conic, substitute the coordinates of the points, and then use the point-slope form to find the tangent lines at the given points.
  3. Simplify the equations for the tangents at each point to get the final answer.