Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.8 Q-2

Question Statement

Find the coordinates of the new origin (h,k)(h, k) such that the first degree terms are removed from the transformed equation of each of the following. Also, find the transformed equations.

i. 3x2βˆ’2y2+24x+12y+24=03x^2 - 2y^2 + 24x + 12y + 24 = 0

ii. 25x2+9y2+50xβˆ’36yβˆ’164=025x^2 + 9y^2 + 50x - 36y - 164 = 0

iii. x2βˆ’y2βˆ’6x+2y+7=0x^2 - y^2 - 6x + 2y + 7 = 0


Background and Explanation

To solve these problems, we need to perform a coordinate transformation to eliminate the first-degree terms (terms involving xx and yy) from each equation. The transformation of coordinates involves shifting the origin of the coordinate system to a new point (h,k)(h, k). This can be achieved using the equations:

X=x+h,Y=y+kX = x + h, \quad Y = y + k

Where XX and YY are the new coordinates, and xx and yy are the original coordinates. By substituting these into the original equation, we aim to remove the first-degree terms and find the transformed equation.


Solution

i. 3x2βˆ’2y2+24x+12y+24=03x^2 - 2y^2 + 24x + 12y + 24 = 0

  1. Transformation of coordinates: Let the new origin be (h,k)(h, k). The transformation equations are:
X=x+h,Y=y+kX = x + h, \quad Y = y + k
  1. Substitute into the original equation:
3(x+h)2βˆ’2(y+k)2+24(x+h)+12(y+k)+24=03(x + h)^2 - 2(y + k)^2 + 24(x + h) + 12(y + k) + 24 = 0

Expanding each term:

3(x2+2hx+h2)βˆ’2(y2+2ky+k2)+24x+24h+12y+12k+24=03(x^2 + 2hx + h^2) - 2(y^2 + 2ky + k^2) + 24x + 24h + 12y + 12k + 24 = 0

Simplifying:

3x2+6hx+3h2βˆ’2y2βˆ’4kyβˆ’2k2+24x+24h+12y+12k+24=03x^2 + 6hx + 3h^2 - 2y^2 - 4ky - 2k^2 + 24x + 24h + 12y + 12k + 24 = 0
  1. Group the terms:
3x2βˆ’2y2+x(6h+24)+y(βˆ’4k+12)+(3h2βˆ’2k2+24h+12k+24)=03x^2 - 2y^2 + x(6h + 24) + y(-4k + 12) + (3h^2 - 2k^2 + 24h + 12k + 24) = 0
  1. Eliminate the first degree terms:

For the first degree terms to vanish, the coefficients of xx and yy must be zero:

6h+24=0andβˆ’4k+12=06h + 24 = 0 \quad \text{and} \quad -4k + 12 = 0

Solving these:

h=βˆ’4andk=3h = -4 \quad \text{and} \quad k = 3
  1. Substitute h=βˆ’4h = -4 and k=3k = 3 into the equation:
3x2βˆ’2y2+48βˆ’18βˆ’96+36+24=03x^2 - 2y^2 + 48 - 18 - 96 + 36 + 24 = 0

Simplify:

3x2βˆ’2y2βˆ’6=03x^2 - 2y^2 - 6 = 0

Thus, the transformed equation is:

3x2βˆ’2y2βˆ’6=03x^2 - 2y^2 - 6 = 0

ii. 25x2+9y2+50xβˆ’36yβˆ’164=025x^2 + 9y^2 + 50x - 36y - 164 = 0

  1. Transformation of coordinates: Again, let the new origin be (h,k)(h, k), with transformation equations:
X=x+h,Y=y+kX = x + h, \quad Y = y + k
  1. Substitute into the original equation:
25(x+h)2+9(y+k)2+50(x+h)βˆ’36(y+k)βˆ’164=025(x + h)^2 + 9(y + k)^2 + 50(x + h) - 36(y + k) - 164 = 0

Expanding:

25(x2+2hx+h2)+9(y2+2ky+k2)+50x+50hβˆ’36yβˆ’36kβˆ’164=025(x^2 + 2hx + h^2) + 9(y^2 + 2ky + k^2) + 50x + 50h - 36y - 36k - 164 = 0

Simplifying:

25x2+50hx+25h2+9y2+18ky+9k2+50x+50hβˆ’36yβˆ’36kβˆ’164=025x^2 + 50hx + 25h^2 + 9y^2 + 18ky + 9k^2 + 50x + 50h - 36y - 36k - 164 = 0
  1. Group the terms:
25x2+9y2+x(50h+50)+y(18kβˆ’36)+(25h2+9k2+50hβˆ’36kβˆ’164)=025x^2 + 9y^2 + x(50h + 50) + y(18k - 36) + (25h^2 + 9k^2 + 50h - 36k - 164) = 0
  1. Eliminate the first degree terms:

For the first degree terms to vanish, the coefficients of xx and yy must be zero:

50h+50=0and18kβˆ’36=050h + 50 = 0 \quad \text{and} \quad 18k - 36 = 0

Solving these:

h=βˆ’1andk=2h = -1 \quad \text{and} \quad k = 2
  1. Substitute h=βˆ’1h = -1 and k=2k = 2 into the equation:
25x2+9y2+25+36βˆ’50βˆ’72βˆ’164=025x^2 + 9y^2 + 25 + 36 - 50 - 72 - 164 = 0

Simplify:

25x2+9y2βˆ’225=025x^2 + 9y^2 - 225 = 0

Thus, the transformed equation is:

25x2+9y2βˆ’225=025x^2 + 9y^2 - 225 = 0

iii. x2βˆ’y2βˆ’6x+2y+7=0x^2 - y^2 - 6x + 2y + 7 = 0

  1. Transformation of coordinates: Let the new origin be (h,k)(h, k), with transformation equations:
X=x+h,Y=y+kX = x + h, \quad Y = y + k
  1. Substitute into the original equation:
(x+h)2βˆ’(y+k)2βˆ’6(x+h)+2(y+k)+7=0(x + h)^2 - (y + k)^2 - 6(x + h) + 2(y + k) + 7 = 0

Expanding:

(x2+2hx+h2)βˆ’(y2+2ky+k2)βˆ’6xβˆ’6h+2y+2k+7=0(x^2 + 2hx + h^2) - (y^2 + 2ky + k^2) - 6x - 6h + 2y + 2k + 7 = 0

Simplifying:

x2βˆ’y2+x(2hβˆ’6)+y(2kβˆ’2)+(h2βˆ’k2βˆ’6h+2k+7)=0x^2 - y^2 + x(2h - 6) + y(2k - 2) + (h^2 - k^2 - 6h + 2k + 7) = 0
  1. Group the terms:
x2βˆ’y2+x(2hβˆ’6)+y(2kβˆ’2)+(h2βˆ’k2βˆ’6h+2k+7)=0x^2 - y^2 + x(2h - 6) + y(2k - 2) + (h^2 - k^2 - 6h + 2k + 7) = 0
  1. Eliminate the first degree terms:

For the first degree terms to vanish, the coefficients of xx and yy must be zero:

2hβˆ’6=0and2kβˆ’2=02h - 6 = 0 \quad \text{and} \quad 2k - 2 = 0

Solving these:

h=3andk=1h = 3 \quad \text{and} \quad k = 1
  1. Substitute h=3h = 3 and k=1k = 1 into the equation:
x2βˆ’y2+9βˆ’1βˆ’18+2+7=0x^2 - y^2 + 9 - 1 - 18 + 2 + 7 = 0

Simplify:

x2βˆ’y2βˆ’1=0x^2 - y^2 - 1 = 0

Thus, the transformed equation is:

x2βˆ’y2βˆ’1=0x^2 - y^2 - 1 = 0

Key Formulas or Methods Used

  • Coordinate Transformation:
X=x+h,Y=y+k X = x + h, \quad Y = y + k
  • First Degree Terms Removal: The conditions for eliminating first degree terms are:
6h+24=0andβˆ’4k+12=0 6h + 24 = 0 \quad \text{and} \quad -4k + 12 = 0

for each equation.


Summary of Steps

  1. Define the new coordinates: X=x+hX = x + h, Y=y+kY = y + k.
  2. Substitute the transformation into the equation.
  3. Expand and group the terms.
  4. Set the coefficients of first degree terms to zero to solve for hh and kk.
  5. Substitute hh and kk back into the equation to find the transformed equation.