Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.8 Q-3

Question Statement

Find the equation of the curve referred to the new axis obtained by rotating the axis about the origin through the given angle for each of the following:

i. xy=1\quad xy = 1, with θ=45\theta = 45^\circ

ii. 7x28xy+y29=0\quad 7x^2 - 8xy + y^2 - 9 = 0, with θ=arctan(2)\theta = \arctan(2)

iii. 9x2+12xy+4y2xy=0\quad 9x^2 + 12xy + 4y^2 - x - y = 0, with θ=arctan(23)\theta = \arctan \left(\frac{2}{3}\right)

iv. x22xy+y222x22y+2=0\quad x^2 - 2xy + y^2 - 2\sqrt{2}x - 2\sqrt{2}y + 2 = 0, with θ=45\theta = 45^\circ


Background and Explanation

To solve these problems, we need to use the coordinate rotation formula to transform the equations of the curves to new coordinates after rotating the axes by a given angle. The general transformation of the coordinates xx and yy to new coordinates XX and YY after rotating by an angle θ\theta is given by:

X=xcosθysinθX = x \cos \theta - y \sin \theta Y=xsinθ+ycosθY = x \sin \theta + y \cos \theta

Substituting these transformed coordinates into the original equation of the curve will give the new equation in terms of XX and YY.


Solution

i. xy=1xy = 1, with θ=45\theta = 45^\circ

  1. Equation of transformation:
X=xcos45ysin45=xy2,Y=xsin45+ycos45=x+y2 X = x \cos 45^\circ - y \sin 45^\circ = \frac{x - y}{\sqrt{2}}, \quad Y = x \sin 45^\circ + y \cos 45^\circ = \frac{x + y}{\sqrt{2}}
  1. Substitute into the original equation xy=1xy = 1:
(xy2)(xy2)=1 \left( \frac{x - y}{\sqrt{2}} \right) \left( \frac{x - y}{\sqrt{2}} \right) = 1
  1. Simplify:
(xy)22=1 \frac{(x - y)^2}{2} = 1 (xy)2=2 (x - y)^2 = 2
  1. Transformed equation:
x2y2=2 x^2 - y^2 = 2

ii. 7x28xy+y29=07x^2 - 8xy + y^2 - 9 = 0, with θ=arctan(2)\theta = \arctan(2)

  1. Given:
tanθ=2,sinθ=25,cosθ=15 \tan \theta = 2, \quad \sin \theta = \frac{2}{\sqrt{5}}, \quad \cos \theta = \frac{1}{\sqrt{5}}
  1. Equation of transformation:
X=x2y5,Y=2x+y5 X = \frac{x - 2y}{\sqrt{5}}, \quad Y = \frac{2x + y}{\sqrt{5}}
  1. Substitute into the original equation:
7(x2y5)28(x2y5)(2x+y5)+(2x+y5)29=0 7\left(\frac{x - 2y}{\sqrt{5}}\right)^2 - 8\left(\frac{x - 2y}{\sqrt{5}}\right)\left(\frac{2x + y}{\sqrt{5}}\right) + \left(\frac{2x + y}{\sqrt{5}}\right)^2 - 9 = 0
  1. Simplify: After expanding and combining like terms, we get:
5x2+45y245=0 -5x^2 + 45y^2 - 45 = 0 x29y2+9=0 x^2 - 9y^2 + 9 = 0
  1. Transformed equation:
x29y2+9=0 x^2 - 9y^2 + 9 = 0

iii. 9x2+12xy+4y2xy=09x^2 + 12xy + 4y^2 - x - y = 0, with θ=arctan(23)\theta = \arctan\left(\frac{2}{3}\right)

  1. Given:
tanθ=23,sinθ=213,cosθ=313 \tan \theta = \frac{2}{3}, \quad \sin \theta = \frac{2}{\sqrt{13}}, \quad \cos \theta = \frac{3}{\sqrt{13}}
  1. Equation of transformation:
X=3x2y13,Y=2x+3y13 X = \frac{3x - 2y}{\sqrt{13}}, \quad Y = \frac{2x + 3y}{\sqrt{13}}
  1. Substitute into the original equation: After substituting and simplifying the equation, we arrive at:
169x2513x13y=0 169x^2 - 5\sqrt{13}x - \sqrt{13}y = 0
  1. Transformed equation:
1313x25xy=0 13\sqrt{13}x^2 - 5x - y = 0

iv. x22xy+y222x22y+2=0x^2 - 2xy + y^2 - 2\sqrt{2}x - 2\sqrt{2}y + 2 = 0, with θ=45\theta = 45^\circ

  1. Equation of transformation:
X=xy2,Y=x+y2 X = \frac{x - y}{\sqrt{2}}, \quad Y = \frac{x + y}{\sqrt{2}}
  1. Substitute into the original equation: After substituting and simplifying, we get:
4y28x+4=0 4y^2 - 8x + 4 = 0 y22x+1=0 y^2 - 2x + 1 = 0
  1. Transformed equation:
y22x+1=0 y^2 - 2x + 1 = 0

Key Formulas or Methods Used

  • Coordinate Rotation Transformation:
X=xcosθysinθ,Y=xsinθ+ycosθ X = x \cos \theta - y \sin \theta, \quad Y = x \sin \theta + y \cos \theta
  • Substitute into the original equation to derive the transformed equation in XX and YY.

Summary of Steps

  1. Determine the rotation angle and find cosθ\cos \theta and sinθ\sin \theta.
  2. Apply the coordinate transformation equations to convert xx and yy to XX and YY.
  3. Substitute the transformed coordinates into the original equation.
  4. Simplify the resulting expression to obtain the transformed equation.