Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.8 Q-4

Question Statement

Find the measure of the angle through which the axis must be rotated so that the product term xyxy is removed from the transformed equation. Also, find the transformed equation.

i. 2x2+6xy+10y211=02x^2 + 6xy + 10y^2 - 11 = 0

ii. xy+4x3y10=0xy + 4x - 3y - 10 = 0

iii. 5x26xy+5y28=05x^2 - 6xy + 5y^2 - 8 = 0


Background and Explanation

To solve these problems, we need to perform a coordinate rotation to eliminate the xyxy term (the product of xx and yy) in the given equation. The general formula for a coordinate rotation by an angle θ\theta is:

x=xcosθysinθx' = x \cos \theta - y \sin \theta y=xsinθ+ycosθy' = x \sin \theta + y \cos \theta

After substituting these transformed coordinates into the original equation, we will solve for θ\theta by setting the coefficient of the xyxy term to zero. This will give us the angle of rotation that removes the xyxy term.


Solution

i. 2x2+6xy+10y211=02x^2 + 6xy + 10y^2 - 11 = 0

  1. Equation of Transformation:
x=xcosθysinθ,y=xsinθ+ycosθ x' = x \cos \theta - y \sin \theta, \quad y' = x \sin \theta + y \cos \theta
  1. Substitute into the given equation:
2(xcosθysinθ)2+6(xcosθysinθ)(xsinθ+ycosθ)+10(xsinθ+ycosθ)211=0 2(x \cos \theta - y \sin \theta)^2 + 6(x \cos \theta - y \sin \theta)(x \sin \theta + y \cos \theta) + 10(x \sin \theta + y \cos \theta)^2 - 11 = 0
  1. Expand the terms and simplify:
2(x2cos2θ2xysinθcosθ+y2sin2θ)+6(x2cosθsinθ+xy(cos2θsin2θ)y2sinθcosθ)+10(x2sin2θ+2xysinθcosθ+y2cos2θ)11=0 2\left(x^2 \cos^2 \theta - 2xy \sin \theta \cos \theta + y^2 \sin^2 \theta\right) + 6\left(x^2 \cos \theta \sin \theta + xy (\cos^2 \theta - \sin^2 \theta) - y^2 \sin \theta \cos \theta\right) + 10\left(x^2 \sin^2 \theta + 2xy \sin \theta \cos \theta + y^2 \cos^2 \theta\right) - 11 = 0
  1. To eliminate the xyxy term, set the coefficient of xyxy to zero:
4sinθcosθ+6(cos2θsin2θ)+20sinθcosθ=0 -4 \sin \theta \cos \theta + 6 (\cos^2 \theta - \sin^2 \theta) + 20 \sin \theta \cos \theta = 0

Simplify:

6cos2θ+16sinθcosθ=0 6 \cos 2\theta + 16 \sin \theta \cos \theta = 0 6cos2θ+8sin2θ=0 6 \cos 2\theta + 8 \sin 2\theta = 0 6cos2θ=8sin2θ 6 \cos 2\theta = -8 \sin 2\theta tan2θ=34 \tan 2\theta = -\frac{3}{4}
  1. Solve for θ\theta:
3tan2θ8tanθ3=0 3 \tan^2 \theta - 8 \tan \theta - 3 = 0

Factor the equation:

(tanθ3)(3tanθ+1)=0 (\tan \theta - 3)(3 \tan \theta + 1) = 0

Solving for tanθ\tan \theta:

tanθ=3sinθ=310,cosθ=110 \tan \theta = 3 \quad \Rightarrow \quad \sin \theta = \frac{3}{\sqrt{10}}, \quad \cos \theta = \frac{1}{\sqrt{10}}
  1. Substitute θ=45\theta = 45^\circ into the equation to find the transformed equation:
11x2+y211=0 11x^2 + y^2 - 11 = 0

ii. xy+4x3y10=0xy + 4x - 3y - 10 = 0

  1. Equation of Transformation:
x=xcosθysinθ,y=xsinθ+ycosθ x' = x \cos \theta - y \sin \theta, \quad y' = x \sin \theta + y \cos \theta
  1. Substitute into the given equation:
(xcosθysinθ)(xsinθ+ycosθ)+4(xcosθysinθ)3(xsinθ+ycosθ)10=0 (x \cos \theta - y \sin \theta)(x \sin \theta + y \cos \theta) + 4(x \cos \theta - y \sin \theta) - 3(x \sin \theta + y \cos \theta) - 10 = 0
  1. Eliminate the xyxy term: Set the coefficient of xyxy to zero:
cos2θsin2θ=0 \cos^2 \theta - \sin^2 \theta = 0 tanθ=1 \tan \theta = 1 θ=45 \theta = 45^\circ
  1. Substitute θ=45\theta = 45^\circ into the equation to find the transformed equation:
x2y2+2x72y20=0 x^2 - y^2 + \sqrt{2} x - 7\sqrt{2} y - 20 = 0

iii. 5x26xy+5y28=05x^2 - 6xy + 5y^2 - 8 = 0

  1. Equation of Transformation:
x=xcosθysinθ,y=xsinθ+ycosθ x' = x \cos \theta - y \sin \theta, \quad y' = x \sin \theta + y \cos \theta
  1. Substitute into the given equation:
5(xcosθysinθ)26(xcosθysinθ)(xsinθ+ycosθ)+5(xsinθ+ycosθ)28=0 5(x \cos \theta - y \sin \theta)^2 - 6(x \cos \theta - y \sin \theta)(x \sin \theta + y \cos \theta) + 5(x \sin \theta + y \cos \theta)^2 - 8 = 0
  1. Eliminate the xyxy term: Set the coefficient of xyxy to zero:
10sinθcosθ+6(cos2θsin2θ)+10sinθcosθ=0 -10 \sin \theta \cos \theta + 6 (\cos^2 \theta - \sin^2 \theta) + 10 \sin \theta \cos \theta = 0 cos2θsin2θ=0tan2θ=1tanθ=1 \cos^2 \theta - \sin^2 \theta = 0 \quad \Rightarrow \quad \tan^2 \theta = 1 \quad \Rightarrow \quad \tan \theta = 1 θ=45 \theta = 45^\circ
  1. Substitute θ=45\theta = 45^\circ into the equation to find the transformed equation:
x2+4y24=0 x^2 + 4y^2 - 4 = 0

Key Formulas or Methods Used

  • Coordinate Rotation:
x=xcosθysinθ,y=xsinθ+ycosθ x' = x \cos \theta - y \sin \theta, \quad y' = x \sin \theta + y \cos \theta
  • Eliminating the xyxy term: Set the coefficient of the xyxy term to zero and solve for θ\theta.

Summary of Steps

  1. Define the coordinate transformations using the angle θ\theta.
  2. Substitute the transformed coordinates into the given equation.
  3. Expand the equation and simplify.
  4. Set the coefficient of the xyxy term to zero to eliminate it.
  5. Solve for θ\theta and substitute it back into the equation to find the transformed equation.