Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.1 Q-12

Question Statement

Find the position vector of the point of division of the line segments joining the following pairs of points, in the given ratios:

i. Point CC with position vector 2i^βˆ’3j^2 \hat{i} - 3 \hat{j} and point DD with position vector 3i^+2j^3 \hat{i} + 2 \hat{j}, in the ratio 4:3.
ii. Point EE with position vector 5i^5 \hat{i} and point FF with position vector 4i^+j^4 \hat{i} + \hat{j}, in the ratio 2:5.


Background and Explanation

In this problem, we are asked to find the position vector of the point dividing a line segment in a given ratio. The section formula (also known as the division formula) is used to find the position of a point dividing a line segment internally in a given ratio.

The formula for the position vector r\mathbf{r} of a point dividing a line segment joining points AA and BB in the ratio m:nm:n is:

r=nA+mBm+n\mathbf{r} = \frac{n \mathbf{A} + m \mathbf{B}}{m + n}

Where:

  • A\mathbf{A} and B\mathbf{B} are the position vectors of the endpoints.
  • m:nm:n is the ratio in which the point divides the line segment.

We will apply this formula to find the position vectors for the given points and ratios.


Solution

(i) Point dividing the segment CDC D in the ratio 4:3

  1. Given:

    • Position vector of CC: a=2i^βˆ’3j^\mathbf{a} = 2 \hat{i} - 3 \hat{j}
    • Position vector of DD: b=3i^+2j^\mathbf{b} = 3 \hat{i} + 2 \hat{j}
    • Ratio: 4:3
  2. Apply the section formula:
    The position vector of the point dividing CDC D in the ratio 4:3 is given by:

r=3a+4b4+3 \mathbf{r} = \frac{3 \mathbf{a} + 4 \mathbf{b}}{4 + 3}
  1. Substitute the values:
r=3(2i^βˆ’3j^)+4(3i^+2j^)7 \mathbf{r} = \frac{3(2 \hat{i} - 3 \hat{j}) + 4(3 \hat{i} + 2 \hat{j})}{7}
  1. Simplify the expression:
r=(6i^βˆ’9j^)+(12i^+8j^)7 \mathbf{r} = \frac{(6 \hat{i} - 9 \hat{j}) + (12 \hat{i} + 8 \hat{j})}{7} r=18i^βˆ’1j^7 \mathbf{r} = \frac{18 \hat{i} - 1 \hat{j}}{7}
  1. Final result:
r=187i^βˆ’17j^ \mathbf{r} = \frac{18}{7} \hat{i} - \frac{1}{7} \hat{j}

Thus, the position vector of the point dividing CDC D in the ratio 4:3 is:

r=187i^βˆ’17j^\mathbf{r} = \frac{18}{7} \hat{i} - \frac{1}{7} \hat{j}

(ii) Point dividing the segment EFE F in the ratio 2:5

  1. Given:

    • Position vector of EE: a=5i^\mathbf{a} = 5 \hat{i}
    • Position vector of FF: b=4i^+j^\mathbf{b} = 4 \hat{i} + \hat{j}
    • Ratio: 2:5
  2. Apply the section formula:
    The position vector of the point dividing EFE F in the ratio 2:5 is given by:

r=5a+2b5+2 \mathbf{r} = \frac{5 \mathbf{a} + 2 \mathbf{b}}{5 + 2}
  1. Substitute the values:
r=5(5i^)+2(4i^+j^)7 \mathbf{r} = \frac{5(5 \hat{i}) + 2(4 \hat{i} + \hat{j})}{7}
  1. Simplify the expression:
r=(25i^)+(8i^+2j^)7 \mathbf{r} = \frac{(25 \hat{i}) + (8 \hat{i} + 2 \hat{j})}{7} r=33i^+2j^7 \mathbf{r} = \frac{33 \hat{i} + 2 \hat{j}}{7}
  1. Final result:
r=337i^+27j^ \mathbf{r} = \frac{33}{7} \hat{i} + \frac{2}{7} \hat{j}

Thus, the position vector of the point dividing EFE F in the ratio 2:5 is:

r=337i^+27j^\mathbf{r} = \frac{33}{7} \hat{i} + \frac{2}{7} \hat{j}

Key Formulas or Methods Used

  • Section Formula (or Division Formula):
    The position vector r\mathbf{r} of a point dividing the line segment joining two points AA and BB in the ratio m:nm:n is:
r=nA+mBm+n \mathbf{r} = \frac{n \mathbf{A} + m \mathbf{B}}{m + n}

Summary of Steps

  1. Identify the position vectors of the two points and the ratio in which the line segment is divided.
  2. Use the section formula to calculate the position vector of the dividing point.
  3. Simplify the expression to get the final position vector.
  4. For each part of the problem, substitute the given values into the section formula and simplify the result.