Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.1 Q-2

Question Statement

Find the magnitude of the vector U for the following cases:

(i) Uβ€Ύ=2iβ€Ύβˆ’7jβ€Ύ\underline{U} = 2 \underline{\mathbf{i}} - 7 \underline{\mathbf{j}}
(ii) Uβ€Ύ=iβ€Ύ+jβ€Ύ\underline{U} = \underline{\mathbf{i}} + \underline{\mathbf{j}}
(iii) Uβ€Ύ=[3,βˆ’4]\underline{U} = [3, -4]


Background and Explanation

To calculate the magnitude of a vector, we use the Pythagorean theorem. For a vector U in two dimensions, the magnitude is given by: ∣Uβ€Ύβˆ£=x2+y2|\underline{\mathbf{U}}| = \sqrt{x^2 + y^2}

Where xx and yy are the components of the vector along the x and y axes, respectively. This formula is essentially the distance from the origin to the point (x,y)(x, y) in the 2D plane.


Solution

(i) Uβ€Ύ=2iβ€Ύβˆ’7jβ€Ύ\underline{U} = 2 \underline{\mathbf{i}} - 7 \underline{\mathbf{j}}

  1. Identify the components of the vector:
    The vector Uβ€Ύ\underline{U} has components x=2x = 2 and y=βˆ’7y = -7.

  2. Apply the magnitude formula:
    ∣Uβ€Ύβˆ£=(2)2+(βˆ’7)2|\underline{\mathbf{U}}| = \sqrt{(2)^2 + (-7)^2}

  3. Simplify the calculation:
    ∣Uβ€Ύβˆ£=4+49=53|\underline{\mathbf{U}}| = \sqrt{4 + 49} = \sqrt{53}

So, the magnitude of the vector is:
∣Uβ€Ύβˆ£=53|\underline{\mathbf{U}}| = \sqrt{53}


(ii) Uβ€Ύ=iβ€Ύ+jβ€Ύ\underline{U} = \underline{\mathbf{i}} + \underline{\mathbf{j}}

  1. Identify the components of the vector:
    The vector Uβ€Ύ\underline{U} has components x=1x = 1 and y=1y = 1.

  2. Apply the magnitude formula:
    ∣Uβ€Ύβˆ£=(1)2+(1)2|\underline{\mathbf{U}}| = \sqrt{(1)^2 + (1)^2}

  3. Simplify the calculation:
    ∣Uβ€Ύβˆ£=1+1=2|\underline{\mathbf{U}}| = \sqrt{1 + 1} = \sqrt{2}

So, the magnitude of the vector is:
∣Uβ€Ύβˆ£=2|\underline{\mathbf{U}}| = \sqrt{2}


(iii) Uβ€Ύ=[3,βˆ’4]\underline{U} = [3, -4]

  1. Identify the components of the vector:
    The vector Uβ€Ύ\underline{U} has components x=3x = 3 and y=βˆ’4y = -4.

  2. Apply the magnitude formula:
    ∣Uβ€Ύβˆ£=(3)2+(βˆ’4)2|\underline{\mathbf{U}}| = \sqrt{(3)^2 + (-4)^2}

  3. Simplify the calculation:
    ∣Uβ€Ύβˆ£=9+16=25|\underline{\mathbf{U}}| = \sqrt{9 + 16} = \sqrt{25}

  4. Take the square root:
    ∣Uβ€Ύβˆ£=5|\underline{\mathbf{U}}| = 5

So, the magnitude of the vector is:
∣Uβ€Ύβˆ£=5|\underline{\mathbf{U}}| = 5


Key Formulas or Methods Used

  • Magnitude of a 2D vector:
    ∣Uβ€Ύβˆ£=x2+y2|\underline{\mathbf{U}}| = \sqrt{x^2 + y^2}
    Where xx and yy are the components of the vector along the x and y axes.

Summary of Steps

  1. Identify the components xx and yy of the vector U.
  2. Apply the magnitude formula:
    ∣Uβ€Ύβˆ£=x2+y2|\underline{\mathbf{U}}| = \sqrt{x^2 + y^2}
  3. Simplify the expression to get the magnitude of the vector.