Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.1 Q-3

Question Statement

Given the vectors:

  • Uβ€Ύ=2iβ€Ύβˆ’7jβ€Ύ\underline{U} = 2 \underline{\mathbf{i}} - 7 \underline{\mathbf{j}}
  • Vβ€Ύ=iβ€Ύβˆ’6jβ€Ύ\underline{V} = \underline{\mathbf{i}} - 6 \underline{\mathbf{j}}
  • Wβ€Ύ=βˆ’iβ€Ύ+jβ€Ύ\underline{W} = -\underline{\mathbf{i}} + \underline{\mathbf{j}}

Find the following vectors: (i) Uβ€Ύ+Vβ€Ύβˆ’Wβ€Ύ\underline{U} + \underline{V} - \underline{W}
(ii) 2Uβ€Ύβˆ’3Vβ€Ύ+4Wβ€Ύ2 \underline{U} - 3 \underline{V} + 4 \underline{W}
(iii) 12Uβ€Ύ+12Vβ€Ύ+12Wβ€Ύ\frac{1}{2} \underline{U} + \frac{1}{2} \underline{V} + \frac{1}{2} \underline{W}


Background and Explanation

In this problem, you are asked to perform vector operations, including addition, subtraction, and scalar multiplication.

  • Vector Addition/Subtraction: You simply add or subtract the components of vectors in each direction (i.e., x and y components) to find the resulting vector.
  • Scalar Multiplication: When a vector is multiplied by a scalar, you multiply both its x and y components by the scalar.
  • These operations follow the rules of algebra, but applied to vectors, which have both magnitude and direction.

Solution

(i) Uβ€Ύ+Vβ€Ύβˆ’Wβ€Ύ\underline{U} + \underline{V} - \underline{W}

  1. Write the vectors in component form:

    • Uβ€Ύ=2i^βˆ’7j^\underline{U} = 2\hat{i} - 7\hat{j}
    • Vβ€Ύ=i^βˆ’6j^\underline{V} = \hat{i} - 6\hat{j}
    • Wβ€Ύ=βˆ’i^+j^\underline{W} = -\hat{i} + \hat{j}
  2. Perform the vector addition and subtraction:
    Uβ€Ύ+Vβ€Ύβˆ’Wβ€Ύ=(2i^βˆ’7j^)+(i^βˆ’6j^)βˆ’(βˆ’i^+j^)\underline{U} + \underline{V} - \underline{W} = (2\hat{i} - 7\hat{j}) + (\hat{i} - 6\hat{j}) - (-\hat{i} + \hat{j})

  3. Simplify:
    Combine the i-components:
    2i^+i^+i^=4i^2\hat{i} + \hat{i} + \hat{i} = 4\hat{i}
    Combine the j-components:
    βˆ’7j^βˆ’6j^βˆ’j^=βˆ’14j^-7\hat{j} - 6\hat{j} - \hat{j} = -14\hat{j}

So, the result is:
Uβ€Ύ+Vβ€Ύβˆ’Wβ€Ύ=4i^βˆ’14j^\underline{U} + \underline{V} - \underline{W} = 4\hat{i} - 14\hat{j}


(ii) 2Uβ€Ύβˆ’3Vβ€Ύ+4Wβ€Ύ2 \underline{U} - 3 \underline{V} + 4 \underline{W}

  1. Perform scalar multiplication on each vector:

    • 2Uβ€Ύ=2(2i^βˆ’7j^)=4i^βˆ’14j^2 \underline{U} = 2(2\hat{i} - 7\hat{j}) = 4\hat{i} - 14\hat{j}
    • βˆ’3Vβ€Ύ=βˆ’3(i^βˆ’6j^)=βˆ’3i^+18j^-3 \underline{V} = -3(\hat{i} - 6\hat{j}) = -3\hat{i} + 18\hat{j}
    • 4Wβ€Ύ=4(βˆ’i^+j^)=βˆ’4i^+4j^4 \underline{W} = 4(-\hat{i} + \hat{j}) = -4\hat{i} + 4\hat{j}
  2. Add the results:
    (4i^βˆ’14j^)+(βˆ’3i^+18j^)+(βˆ’4i^+4j^)(4\hat{i} - 14\hat{j}) + (-3\hat{i} + 18\hat{j}) + (-4\hat{i} + 4\hat{j})

  3. Simplify:
    Combine the i-components:
    4i^βˆ’3i^βˆ’4i^=βˆ’3i^4\hat{i} - 3\hat{i} - 4\hat{i} = -3\hat{i}
    Combine the j-components:
    βˆ’14j^+18j^+4j^=8j^-14\hat{j} + 18\hat{j} + 4\hat{j} = 8\hat{j}

So, the result is:
2Uβ€Ύβˆ’3Vβ€Ύ+4Wβ€Ύ=βˆ’3i^+8j^2 \underline{U} - 3 \underline{V} + 4 \underline{W} = -3\hat{i} + 8\hat{j}


(iii) 12Uβ€Ύ+12Vβ€Ύ+12Wβ€Ύ\frac{1}{2} \underline{U} + \frac{1}{2} \underline{V} + \frac{1}{2} \underline{W}

  1. Perform scalar multiplication on each vector:

    • 12Uβ€Ύ=12(2i^βˆ’7j^)=i^βˆ’72j^\frac{1}{2} \underline{U} = \frac{1}{2}(2\hat{i} - 7\hat{j}) = \hat{i} - \frac{7}{2}\hat{j}
    • 12Vβ€Ύ=12(i^βˆ’6j^)=12i^βˆ’3j^\frac{1}{2} \underline{V} = \frac{1}{2}(\hat{i} - 6\hat{j}) = \frac{1}{2}\hat{i} - 3\hat{j}
    • 12Wβ€Ύ=12(βˆ’i^+j^)=βˆ’12i^+12j^\frac{1}{2} \underline{W} = \frac{1}{2}(-\hat{i} + \hat{j}) = -\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}
  2. Add the results:
    (i^βˆ’72j^)+(12i^βˆ’3j^)+(βˆ’12i^+12j^)\left(\hat{i} - \frac{7}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{i} - 3\hat{j}\right) + \left(-\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}\right)

  3. Simplify:
    Combine the i-components:
    i^+12i^βˆ’12i^=i^\hat{i} + \frac{1}{2}\hat{i} - \frac{1}{2}\hat{i} = \hat{i}
    Combine the j-components:
    βˆ’72j^βˆ’3j^+12j^=βˆ’6j^-\frac{7}{2}\hat{j} - 3\hat{j} + \frac{1}{2}\hat{j} = -6\hat{j}

So, the result is:
12Uβ€Ύ+12Vβ€Ύ+12Wβ€Ύ=i^βˆ’6j^\frac{1}{2} \underline{U} + \frac{1}{2} \underline{V} + \frac{1}{2} \underline{W} = \hat{i} - 6\hat{j}


Key Formulas or Methods Used

  • Vector Addition/Subtraction:
    Uβ€Ύ+Vβ€Ύ=(x1+x2)i^+(y1+y2)j^\underline{U} + \underline{V} = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j}
    Uβ€Ύβˆ’Wβ€Ύ=(x1βˆ’x2)i^+(y1βˆ’y2)j^\underline{U} - \underline{W} = (x_1 - x_2)\hat{i} + (y_1 - y_2)\hat{j}

  • Scalar Multiplication:
    cUβ€Ύ=c(xi^+yj^)=(cx)i^+(cy)j^c\underline{U} = c(x\hat{i} + y\hat{j}) = (cx)\hat{i} + (cy)\hat{j}


Summary of Steps

  1. For vector addition or subtraction, combine the i and j components separately.
  2. For scalar multiplication, multiply each component of the vector by the scalar.
  3. Perform the operations step-by-step and simplify the components to get the final result.