Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.1 Q-6

Question Statement

Find the unit vector in the direction of the given vectors:

(i) Vβ€Ύ=2iβ€Ύβˆ’jβ€Ύ\underline{V} = 2 \underline{\mathbf{i}} - \underline{\mathbf{j}}
(ii) Vβ€Ύ=12iβ€Ύβˆ’32jβ€Ύ\underline{V} = \frac{1}{2} \underline{i} - \frac{\sqrt{3}}{2} \underline{j}
(iii) Vβ€Ύ=βˆ’32iβ€Ύβˆ’12jβ€Ύ\underline{V} = -\frac{\sqrt{3}}{2} \underline{i} - \frac{1}{2} \underline{j}


Background and Explanation

A unit vector is a vector with a magnitude of 1. To find a unit vector in the direction of a given vector Vβ€Ύ\underline{V}, we use the formula: Uβ€Ύ=Vβ€Ύβˆ£Vβ€Ύβˆ£\underline{U} = \frac{\underline{V}}{|\underline{V}|}

Where ∣Vβ€Ύβˆ£|\underline{V}| is the magnitude of the vector Vβ€Ύ\underline{V}. The magnitude of a 2D vector Vβ€Ύ=xi^+yj^\underline{V} = x\hat{i} + y\hat{j} is given by: ∣Vβ€Ύβˆ£=x2+y2|\underline{V}| = \sqrt{x^2 + y^2}

After finding the magnitude, we divide each component of Vβ€Ύ\underline{V} by its magnitude to get the unit vector Uβ€Ύ\underline{U}.


Solution

(i) Vβ€Ύ=2iβ€Ύβˆ’jβ€Ύ\underline{V} = 2 \underline{\mathbf{i}} - \underline{\mathbf{j}}

  1. Find the magnitude of Vβ€Ύ\underline{V}:
    ∣Vβ€Ύβˆ£=(2)2+(βˆ’1)2=4+1=5|\underline{V}| = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5}

  2. Find the unit vector Uβ€Ύ\underline{U}:
    Uβ€Ύ=2i^βˆ’j^5\underline{U} = \frac{2\hat{i} - \hat{j}}{\sqrt{5}}

  3. Simplify the result:
    Uβ€Ύ=25i^βˆ’15j^\underline{U} = \frac{2}{\sqrt{5}} \hat{i} - \frac{1}{\sqrt{5}} \hat{j}

Thus, the unit vector in the direction of Vβ€Ύ\underline{V} is:
Uβ€Ύ=25i^βˆ’15j^\underline{U} = \frac{2}{\sqrt{5}} \hat{i} - \frac{1}{\sqrt{5}} \hat{j}


(ii) Vβ€Ύ=12iβ€Ύβˆ’32jβ€Ύ\underline{V} = \frac{1}{2} \underline{i} - \frac{\sqrt{3}}{2} \underline{j}

  1. Find the magnitude of Vβ€Ύ\underline{V}:
    ∣Vβ€Ύβˆ£=(12)2+(32)2=14+34=1=1|\underline{V}| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

  2. Find the unit vector Uβ€Ύ\underline{U}:
    Since the magnitude of Vβ€Ύ\underline{V} is already 1, the unit vector is just Vβ€Ύ\underline{V} itself:
    Uβ€Ύ=12i^βˆ’32j^\underline{U} = \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}

Thus, the unit vector in the direction of Vβ€Ύ\underline{V} is:
Uβ€Ύ=12i^βˆ’32j^\underline{U} = \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}


(iii) Vβ€Ύ=βˆ’32iβ€Ύβˆ’12jβ€Ύ\underline{V} = -\frac{\sqrt{3}}{2} \underline{i} - \frac{1}{2} \underline{j}

  1. Find the magnitude of Vβ€Ύ\underline{V}:
    ∣Vβ€Ύβˆ£=(βˆ’32)2+(βˆ’12)2=34+14=1=1|\underline{V}| = \sqrt{\left(-\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1

  2. Find the unit vector Uβ€Ύ\underline{U}:
    Since the magnitude of Vβ€Ύ\underline{V} is already 1, the unit vector is simply Vβ€Ύ\underline{V}:
    Uβ€Ύ=βˆ’32i^βˆ’12j^\underline{U} = -\frac{\sqrt{3}}{2} \hat{i} - \frac{1}{2} \hat{j}

Thus, the unit vector in the direction of Vβ€Ύ\underline{V} is:
Uβ€Ύ=βˆ’32i^βˆ’12j^\underline{U} = -\frac{\sqrt{3}}{2} \hat{i} - \frac{1}{2} \hat{j}


Key Formulas or Methods Used

  • Magnitude of a vector:
    ∣Vβ€Ύβˆ£=x2+y2|\underline{V}| = \sqrt{x^2 + y^2}
    Where xx and yy are the components of the vector.

  • Unit vector:
    Uβ€Ύ=Vβ€Ύβˆ£Vβ€Ύβˆ£\underline{U} = \frac{\underline{V}}{|\underline{V}|}
    Where ∣Vβ€Ύβˆ£|\underline{V}| is the magnitude of the vector Vβ€Ύ\underline{V}.


Summary of Steps

  1. Find the magnitude of the given vector Vβ€Ύ\underline{V} using the formula:
    ∣Vβ€Ύβˆ£=x2+y2|\underline{V}| = \sqrt{x^2 + y^2}

  2. Divide each component of Vβ€Ύ\underline{V} by its magnitude to find the unit vector:
    Uβ€Ύ=Vβ€Ύβˆ£Vβ€Ύβˆ£\underline{U} = \frac{\underline{V}}{|\underline{V}|}

  3. Simplify the expression to obtain the unit vector in the desired direction.