Question Statement
Given points A ( 2 , 5 ) A(2,5) A ( 2 , 5 ) , B ( β 1 , 1 ) B(-1,1) B ( β 1 , 1 ) , and C ( 2 , β 6 ) C(2,-6) C ( 2 , β 6 ) , the following calculations need to be performed:
(i) Find A B AB A B (the vector from point A to point B)
(ii) Calculate 2 A B β β C B β 2 \mathrm{A} \vec{B} - C \vec{B} 2 A B β C B
(iii) Find 2 C B β β 2 C A β 2 C \vec{B} - 2 C \vec{A} 2 C B β 2 C A
Background and Explanation
To solve these problems, we need to apply basic vector operations such as subtraction, scalar multiplication, and understanding the relationship between points and vectors.
Vector Notation : A vector between two points P ( x 1 , y 1 ) P(x_1, y_1) P ( x 1 β , y 1 β ) and Q ( x 2 , y 2 ) Q(x_2, y_2) Q ( x 2 β , y 2 β ) can be calculated as:
P Q β = ( x 2 β x 1 ) i + ( y 2 β y 1 ) j \overrightarrow{PQ} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} PQ β = ( x 2 β β x 1 β ) i + ( y 2 β β y 1 β ) j
Scalar Multiplication : To multiply a vector by a scalar, multiply each of its components by the scalar.
These concepts are essential for finding the required vectors and performing the operations in the problem.
Solution
Letβs solve each part step by step.
(i) Find AB
The vector from point A ( 2 , 5 ) A(2, 5) A ( 2 , 5 ) to point B ( β 1 , 1 ) B(-1, 1) B ( β 1 , 1 ) is calculated by subtracting the coordinates of A A A from those of B B B :
A B β = B β A = ( β 1 , 1 ) β ( 2 , 5 ) \overrightarrow{AB} = B - A = (-1, 1) - (2, 5) A B = B β A = ( β 1 , 1 ) β ( 2 , 5 )
Now subtract the corresponding components:
A B β = ( β 1 β 2 , 1 β 5 ) = ( β 3 , β 4 ) \overrightarrow{AB} = (-1 - 2, 1 - 5) = (-3, -4) A B = ( β 1 β 2 , 1 β 5 ) = ( β 3 , β 4 )
So, the vector A B β = β 3 i β 4 j \overrightarrow{AB} = -3 \mathbf{i} - 4 \mathbf{j} A B = β 3 i β 4 j .
(ii) Calculate 2 A B β β C B β 2 A \vec{B} - C \vec{B} 2 A B β C B
First, we need to find the vector A B β \overrightarrow{AB} A B and C B β \overrightarrow{CB} CB :
A B β = ( β 1 , 1 ) β ( 2 , 5 ) = ( β 3 , β 4 ) \overrightarrow{AB} = (-1, 1) - (2, 5) = (-3, -4) A B = ( β 1 , 1 ) β ( 2 , 5 ) = ( β 3 , β 4 )
C B β = ( β 1 , 1 ) β ( 2 , β 6 ) = ( β 3 , 7 ) \overrightarrow{CB} = (-1, 1) - (2, -6) = (-3, 7) CB = ( β 1 , 1 ) β ( 2 , β 6 ) = ( β 3 , 7 )
Now, letβs calculate 2 A B β β C B β 2 \overrightarrow{AB} - \overrightarrow{CB} 2 A B β CB :
2 A B β = 2 ( β 3 , β 4 ) = ( β 6 , β 8 ) 2 \overrightarrow{AB} = 2(-3, -4) = (-6, -8) 2 A B = 2 ( β 3 , β 4 ) = ( β 6 , β 8 )
Now subtract C B β \overrightarrow{CB} CB from 2 A B β 2 \overrightarrow{AB} 2 A B :
2 A B β β C B β = ( β 6 , β 8 ) β ( β 3 , 7 ) 2 \overrightarrow{AB} - \overrightarrow{CB} = (-6, -8) - (-3, 7) 2 A B β CB = ( β 6 , β 8 ) β ( β 3 , 7 )
This simplifies to:
( β 6 + 3 , β 8 β 7 ) = ( β 3 , β 15 ) (-6 + 3, -8 - 7) = (-3, -15) ( β 6 + 3 , β 8 β 7 ) = ( β 3 , β 15 )
So, the result is β 3 i β 15 j -3 \mathbf{i} - 15 \mathbf{j} β 3 i β 15 j .
(iii) Find 2 C B β β 2 C A β 2 C \vec{B} - 2 C \vec{A} 2 C B β 2 C A
Letβs first calculate the vectors C B β \overrightarrow{CB} CB and C A β \overrightarrow{CA} C A :
C B β = ( β 1 , 1 ) β ( 2 , β 6 ) = ( β 3 , 7 ) \overrightarrow{CB} = (-1, 1) - (2, -6) = (-3, 7) CB = ( β 1 , 1 ) β ( 2 , β 6 ) = ( β 3 , 7 )
C A β = ( 2 , 5 ) β ( 2 , β 6 ) = ( 0 , 11 ) \overrightarrow{CA} = (2, 5) - (2, -6) = (0, 11) C A = ( 2 , 5 ) β ( 2 , β 6 ) = ( 0 , 11 )
Now calculate 2 C B β β 2 C A β 2 \overrightarrow{CB} - 2 \overrightarrow{CA} 2 CB β 2 C A :
2 C B β = 2 ( β 3 , 7 ) = ( β 6 , 14 ) 2 \overrightarrow{CB} = 2(-3, 7) = (-6, 14) 2 CB = 2 ( β 3 , 7 ) = ( β 6 , 14 )
2 C A β = 2 ( 0 , 11 ) = ( 0 , 22 ) 2 \overrightarrow{CA} = 2(0, 11) = (0, 22) 2 C A = 2 ( 0 , 11 ) = ( 0 , 22 )
Finally, subtract 2 C A β 2 \overrightarrow{CA} 2 C A from 2 C B β 2 \overrightarrow{CB} 2 CB :
2 C B β β 2 C A β = ( β 6 , 14 ) β ( 0 , 22 ) 2 \overrightarrow{CB} - 2 \overrightarrow{CA} = (-6, 14) - (0, 22) 2 CB β 2 C A = ( β 6 , 14 ) β ( 0 , 22 )
This simplifies to:
( β 6 β 0 , 14 β 22 ) = ( β 6 , β 8 ) (-6 - 0, 14 - 22) = (-6, -8) ( β 6 β 0 , 14 β 22 ) = ( β 6 , β 8 )
So the result is β 6 i + 8 j -6 \mathbf{i} + 8 \mathbf{j} β 6 i + 8 j .
Vector Subtraction :
P Q β = ( x 2 β x 1 ) i + ( y 2 β y 1 ) j \overrightarrow{PQ} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} PQ β = ( x 2 β β x 1 β ) i + ( y 2 β β y 1 β ) j
Scalar Multiplication :
k P Q β = ( k β
( x 2 β x 1 ) , k β
( y 2 β y 1 ) ) k \overrightarrow{PQ} = (k \cdot (x_2 - x_1), k \cdot (y_2 - y_1)) k PQ β = ( k β
( x 2 β β x 1 β ) , k β
( y 2 β β y 1 β ))
Summary of Steps
Find AB : Subtract the coordinates of point A A A from point B B B to get the vector A B β \overrightarrow{AB} A B .
Calculate 2 A B β β C B β 2 A \vec{B} - C \vec{B} 2 A B β C B : Find the vectors A B β \overrightarrow{AB} A B and C B β \overrightarrow{CB} CB , multiply A B β \overrightarrow{AB} A B by 2, then subtract C B β \overrightarrow{CB} CB .
Find 2 C B β β 2 C A β 2 C \vec{B} - 2 C \vec{A} 2 C B β 2 C A : Find the vectors C B β \overrightarrow{CB} CB and C A β \overrightarrow{CA} C A , multiply each by 2, then subtract the results.