Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-1

Question Statement

Given points A(2,5)A(2,5), B(βˆ’1,1)B(-1,1), and C(2,βˆ’6)C(2,-6), the following calculations need to be performed:

  1. (i) Find ABAB (the vector from point A to point B)
  2. (ii) Calculate 2ABβƒ—βˆ’CBβƒ—2 \mathrm{A} \vec{B} - C \vec{B}
  3. (iii) Find 2CBβƒ—βˆ’2CAβƒ—2 C \vec{B} - 2 C \vec{A}

Background and Explanation

To solve these problems, we need to apply basic vector operations such as subtraction, scalar multiplication, and understanding the relationship between points and vectors.

  • Vector Notation: A vector between two points P(x1,y1)P(x_1, y_1) and Q(x2,y2)Q(x_2, y_2) can be calculated as: PQβ†’=(x2βˆ’x1)i+(y2βˆ’y1)j\overrightarrow{PQ} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j}

  • Scalar Multiplication: To multiply a vector by a scalar, multiply each of its components by the scalar.

These concepts are essential for finding the required vectors and performing the operations in the problem.


Solution

Let’s solve each part step by step.

(i) Find AB

The vector from point A(2,5)A(2, 5) to point B(βˆ’1,1)B(-1, 1) is calculated by subtracting the coordinates of AA from those of BB:

ABβ†’=Bβˆ’A=(βˆ’1,1)βˆ’(2,5)\overrightarrow{AB} = B - A = (-1, 1) - (2, 5)

Now subtract the corresponding components:

ABβ†’=(βˆ’1βˆ’2,1βˆ’5)=(βˆ’3,βˆ’4)\overrightarrow{AB} = (-1 - 2, 1 - 5) = (-3, -4)

So, the vector ABβ†’=βˆ’3iβˆ’4j\overrightarrow{AB} = -3 \mathbf{i} - 4 \mathbf{j}.

(ii) Calculate 2ABβƒ—βˆ’CBβƒ—2 A \vec{B} - C \vec{B}

First, we need to find the vector AB→\overrightarrow{AB} and CB→\overrightarrow{CB}:

ABβ†’=(βˆ’1,1)βˆ’(2,5)=(βˆ’3,βˆ’4)\overrightarrow{AB} = (-1, 1) - (2, 5) = (-3, -4) CBβ†’=(βˆ’1,1)βˆ’(2,βˆ’6)=(βˆ’3,7)\overrightarrow{CB} = (-1, 1) - (2, -6) = (-3, 7)

Now, let’s calculate 2ABβ†’βˆ’CBβ†’2 \overrightarrow{AB} - \overrightarrow{CB}:

2ABβ†’=2(βˆ’3,βˆ’4)=(βˆ’6,βˆ’8)2 \overrightarrow{AB} = 2(-3, -4) = (-6, -8)

Now subtract CB→\overrightarrow{CB} from 2AB→2 \overrightarrow{AB}:

2ABβ†’βˆ’CBβ†’=(βˆ’6,βˆ’8)βˆ’(βˆ’3,7)2 \overrightarrow{AB} - \overrightarrow{CB} = (-6, -8) - (-3, 7)

This simplifies to:

(βˆ’6+3,βˆ’8βˆ’7)=(βˆ’3,βˆ’15)(-6 + 3, -8 - 7) = (-3, -15)

So, the result is βˆ’3iβˆ’15j-3 \mathbf{i} - 15 \mathbf{j}.

(iii) Find 2CBβƒ—βˆ’2CAβƒ—2 C \vec{B} - 2 C \vec{A}

Let’s first calculate the vectors CBβ†’\overrightarrow{CB} and CAβ†’\overrightarrow{CA}:

CBβ†’=(βˆ’1,1)βˆ’(2,βˆ’6)=(βˆ’3,7)\overrightarrow{CB} = (-1, 1) - (2, -6) = (-3, 7) CAβ†’=(2,5)βˆ’(2,βˆ’6)=(0,11)\overrightarrow{CA} = (2, 5) - (2, -6) = (0, 11)

Now calculate 2CBβ†’βˆ’2CAβ†’2 \overrightarrow{CB} - 2 \overrightarrow{CA}:

2CBβ†’=2(βˆ’3,7)=(βˆ’6,14)2 \overrightarrow{CB} = 2(-3, 7) = (-6, 14) 2CAβ†’=2(0,11)=(0,22)2 \overrightarrow{CA} = 2(0, 11) = (0, 22)

Finally, subtract 2CA→2 \overrightarrow{CA} from 2CB→2 \overrightarrow{CB}:

2CBβ†’βˆ’2CAβ†’=(βˆ’6,14)βˆ’(0,22)2 \overrightarrow{CB} - 2 \overrightarrow{CA} = (-6, 14) - (0, 22)

This simplifies to:

(βˆ’6βˆ’0,14βˆ’22)=(βˆ’6,βˆ’8)(-6 - 0, 14 - 22) = (-6, -8)

So the result is βˆ’6i+8j-6 \mathbf{i} + 8 \mathbf{j}.


Key Formulas or Methods Used

  • Vector Subtraction: PQβ†’=(x2βˆ’x1)i+(y2βˆ’y1)j\overrightarrow{PQ} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j}

  • Scalar Multiplication: kPQβ†’=(kβ‹…(x2βˆ’x1),kβ‹…(y2βˆ’y1))k \overrightarrow{PQ} = (k \cdot (x_2 - x_1), k \cdot (y_2 - y_1))


Summary of Steps

  1. Find AB: Subtract the coordinates of point AA from point BB to get the vector AB→\overrightarrow{AB}.
  2. Calculate 2ABβƒ—βˆ’CBβƒ—2 A \vec{B} - C \vec{B}: Find the vectors ABβ†’\overrightarrow{AB} and CBβ†’\overrightarrow{CB}, multiply ABβ†’\overrightarrow{AB} by 2, then subtract CBβ†’\overrightarrow{CB}.
  3. Find 2CBβƒ—βˆ’2CAβƒ—2 C \vec{B} - 2 C \vec{A}: Find the vectors CBβ†’\overrightarrow{CB} and CAβ†’\overrightarrow{CA}, multiply each by 2, then subtract the results.