Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-10

Question Statement

We say that two vectors Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} in space are parallel if there exists a scalar cc such that: Vβ€Ύ=cWβ€Ύ\underline{\mathbf{V}} = c \underline{\mathbf{W}}

The vectors point in the same direction if c>0c > 0, and in the opposite direction if c<0c < 0.

We are given the following vectors:

  • Vβ€Ύ=2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ\underline{\mathbf{V}} = 2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}
  • Vβ€Ύ=iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}
  • Wβ€Ύ=aiβ€Ύ+ajβ€Ύβˆ’12kβ€Ύ\underline{\mathbf{W}} = a \underline{\mathbf{i}} + a \underline{\mathbf{j}} - 12 \underline{\mathbf{k}}

Solve the following:

  1. (a) Find the two vectors whose length is 2 and are parallel to Vβ€Ύ\underline{\mathbf{V}}.
  2. (b) Determine the value of aa if Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are parallel.
  3. (c) Find the unit vector in the direction of Vβ€Ύ\underline{\mathbf{V}}.
  4. (d) Find the values of aa and bb for which the vectors 3iβ€Ύβˆ’jβ€Ύ+4kβ€Ύ3 \underline{i} - \underline{j} + 4 \underline{k} and aiβ€Ύ+bjβ€Ύβˆ’2kβ€Ύa \underline{i} + b \underline{j} - 2 \underline{k} are parallel.

Background and Explanation

To solve these problems, we will use the following concepts:

  1. Magnitude of a Vector: The magnitude (or length) of a vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  2. Unit Vector: A unit vector is a vector with a magnitude of 1. To find the unit vector in the direction of v\mathbf{v}, we divide each component of v\mathbf{v} by its magnitude: v^=v∣v∣\hat{v} = \frac{\mathbf{v}}{|\mathbf{v}|}

  3. Parallel Vectors: Two vectors are parallel if one is a scalar multiple of the other. That is, V=cW\mathbf{V} = c \mathbf{W} for some scalar cc.


Solution

(a) Find the two vectors whose length is 2 and are parallel to Vβ€Ύ\underline{\mathbf{V}}

  1. Find the magnitude of Vβ€Ύ\underline{\mathbf{V}}: ∣Vβ€Ύβˆ£=(2)2+(βˆ’4)2+(4)2=4+16+16=36=6|\underline{\mathbf{V}}| = \sqrt{(2)^2 + (-4)^2 + (4)^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6

  2. Find the unit vector in the direction of Vβ€Ύ\underline{\mathbf{V}}: The unit vector V^\hat{V} is: V^=Vβ€Ύβˆ£Vβ€Ύβˆ£=16(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)\hat{V} = \frac{\underline{\mathbf{V}}}{|\underline{\mathbf{V}}|} = \frac{1}{6}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}})

  3. Find the two vectors with magnitude 2: Multiply the unit vector by 2 and βˆ’2-2 to get the two vectors: 2V^=26(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)=13(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)2 \hat{V} = \frac{2}{6}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}) = \frac{1}{3}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}) βˆ’2V^=βˆ’26(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)=βˆ’13(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)-2 \hat{V} = \frac{-2}{6}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}) = -\frac{1}{3}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}})

Thus, the two vectors are: 13(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)andβˆ’13(2iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ)\frac{1}{3}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}) \quad \text{and} \quad -\frac{1}{3}(2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}})

(b) Find the value of aa if Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are parallel

For the vectors Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} to be parallel, there must be a scalar cc such that: Vβ€Ύ=cWβ€Ύ\underline{\mathbf{V}} = c \underline{\mathbf{W}}

We are given: Vβ€Ύ=iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}} Wβ€Ύ=aiβ€Ύ+ajβ€Ύβˆ’12kβ€Ύ\underline{\mathbf{W}} = a \underline{\mathbf{i}} + a \underline{\mathbf{j}} - 12 \underline{\mathbf{k}}

To find aa, we set up the following ratio of components: 1a=βˆ’39=4βˆ’12\frac{1}{a} = \frac{-3}{9} = \frac{4}{-12}

Thus, solving for aa: a=βˆ’3a = -3

(c) Find the unit vector in the direction of Vβ€Ύ\underline{\mathbf{V}}

We already calculated the magnitude of Vβ€Ύ\underline{\mathbf{V}} as ∣Vβ€Ύβˆ£=6|\underline{\mathbf{V}}| = 6. Now, to find the unit vector V^\hat{V}, we divide each component of Vβ€Ύ\underline{\mathbf{V}} by its magnitude: V^=Vβ€Ύβˆ£Vβ€Ύβˆ£=16(iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ)\hat{V} = \frac{\underline{\mathbf{V}}}{|\underline{\mathbf{V}}|} = \frac{1}{6}( \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}})

Thus, the unit vector in the direction of Vβ€Ύ\underline{\mathbf{V}} is: V^=16(iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ)\hat{V} = \frac{1}{6}( \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}})

(d) Find the values of aa and bb for which the vectors 3iβ€Ύβˆ’jβ€Ύ+4kβ€Ύ3 \underline{i} - \underline{j} + 4 \underline{k} and aiβ€Ύ+bjβ€Ύβˆ’2kβ€Ύa \underline{i} + b \underline{j} - 2 \underline{k} are parallel

For the vectors 3iβ€Ύβˆ’jβ€Ύ+4kβ€Ύ3 \underline{i} - \underline{j} + 4 \underline{k} and aiβ€Ύ+bjβ€Ύβˆ’2kβ€Ύa \underline{i} + b \underline{j} - 2 \underline{k} to be parallel, there must exist a scalar kk such that: 3iβ€Ύβˆ’jβ€Ύ+4kβ€Ύ=k(aiβ€Ύ+bjβ€Ύβˆ’2kβ€Ύ)3 \underline{i} - \underline{j} + 4 \underline{k} = k(a \underline{i} + b \underline{j} - 2 \underline{k})

Comparing the components: 3a=βˆ’1b=4βˆ’2\frac{3}{a} = \frac{-1}{b} = \frac{4}{-2}

Solving the ratios:

  • 3a=βˆ’2\frac{3}{a} = -2 implies a=βˆ’32a = -\frac{3}{2}.
  • βˆ’1b=βˆ’2\frac{-1}{b} = -2 implies b=12b = \frac{1}{2}.

Thus, the values of aa and bb are: a=βˆ’32,b=12a = -\frac{3}{2}, \quad b = \frac{1}{2}


Key Formulas or Methods Used

  • Magnitude of a Vector: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Unit Vector: v^=v∣v∣\hat{v} = \frac{\mathbf{v}}{|\mathbf{v}|}

  • Parallel Vectors: Two vectors are parallel if one is a scalar multiple of the other: V=cW\mathbf{V} = c \mathbf{W}


Summary of Steps

  1. (a) Find the magnitude of V\mathbf{V}, then calculate the unit vector. Multiply by 2 and βˆ’2-2 to get two vectors parallel to V\mathbf{V} with length 2.
  2. (b) Set up the parallelism equation and solve for aa.
  3. (c) Find the unit vector of V\mathbf{V} by dividing each component by the magnitude.
  4. (d) Set up the parallelism equation for the two vectors, solve the ratios for aa and bb, and find their values.