π¨ This site is a work in progress. Exciting updates are coming soon!
7.2 Q-11
Question Statement
Find the direction cosines for the following vectors:
(i) Vβ=3iββjβ+2kβ
(ii) Vβ=6iββ2jβ+kβ
(iii) P=(2,1,5), Q=(1,3,1) (find the direction cosines of the vector PQβ)
Background and Explanation
The direction cosines of a vector represent the cosines of the angles that the vector makes with the x-, y-, and z-axes. To find the direction cosines for any vector v=vxβi+vyβj+vzβk, we use the following formula:
cosΞ±=β£vβ£vxββ,cosΞ²=β£vβ£vyββ,cosΞ³=β£vβ£vzββ
Where:
β£vβ£ is the magnitude of the vector.
Ξ±, Ξ², and Ξ³ are the angles between the vector and the x-, y-, and z-axes, respectively.
The magnitude of a vector v=vxβi+vyβj+vzβk is calculated using:
β£vβ£=vx2β+vy2β+vz2ββ
Solution
(i) Find the direction cosines ofVβ=3iββjβ+2kβ
Find the magnitude of Vβ:
β£Vββ£=(3)2+(β1)2+(2)2β=9+1+4β=14β
Find the direction cosines:
Using the formula for the direction cosines:
cosΞ±=14β3β,cosΞ²=14ββ1β,cosΞ³=14β2β
Thus, the direction cosines of Vβ are:
[14β3β,14ββ1β,14β2β]
(ii) Find the direction cosines ofVβ=6iββ2jβ+kβ
Find the magnitude of Vβ:
β£Vββ£=(6)2+(β2)2+(1)2β=36+4+1β=41β
Find the direction cosines:
Using the formula for the direction cosines:
cosΞ±=41β6β,cosΞ²=41ββ2β,cosΞ³=41β1β
Thus, the direction cosines of Vβ are:
[41β6β,41ββ2β,41β1β]
(iii) Find the direction cosines of the vector PQβ
Find the vector PQβ:
The vector PQβ is given by:
PQβ=QβP=(1,3,1)β(2,1,5)=(1β2,3β1,1β5)=(β1,2,β4)
Find the magnitude of PQβ:
β£PQββ£=(β1)2+(2)2+(β4)2β=1+4+16β=21β
Find the direction cosines:
Using the formula for the direction cosines:
cosΞ±=21ββ1β,cosΞ²=21β2β,cosΞ³=21ββ4β
Thus, the direction cosines of PQβ are:
[21ββ1β,21β2β,21ββ4β]
Key Formulas or Methods Used
Magnitude of a Vector:
β£vβ£=vx2β+vy2β+vz2ββ
Direction Cosines:
cosΞ±=β£vβ£vxββ,cosΞ²=β£vβ£vyββ,cosΞ³=β£vβ£vzββ
Summary of Steps
(i) Find the magnitude of Vβ=3iββjβ+2kβ, then calculate the direction cosines by dividing each component by the magnitude.
(ii) Find the magnitude of Vβ=6iββ2jβ+kβ, then calculate the direction cosines.
(iii) Find the vector PQβ, then calculate its magnitude and direction cosines.