Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-11

Question Statement

Find the direction cosines for the following vectors:

(i) Vβ€Ύ=3iβ€Ύβˆ’jβ€Ύ+2kβ€Ύ\underline{\mathbf{V}} = 3 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}
(ii) Vβ€Ύ=6iβ€Ύβˆ’2jβ€Ύ+kβ€Ύ\underline{\mathbf{V}} = 6 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + \underline{\mathbf{k}}
(iii) P=(2,1,5)\mathbf{P} = (2, 1, 5), Q=(1,3,1)\mathbf{Q} = (1, 3, 1) (find the direction cosines of the vector PQ→\overrightarrow{PQ})


Background and Explanation

The direction cosines of a vector represent the cosines of the angles that the vector makes with the xx-, yy-, and zz-axes. To find the direction cosines for any vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}, we use the following formula: cos⁑α=vx∣v∣,cos⁑β=vy∣v∣,cos⁑γ=vz∣v∣\cos \alpha = \frac{v_x}{|\mathbf{v}|}, \quad \cos \beta = \frac{v_y}{|\mathbf{v}|}, \quad \cos \gamma = \frac{v_z}{|\mathbf{v}|}

Where:

  • ∣v∣|\mathbf{v}| is the magnitude of the vector.
  • Ξ±\alpha, Ξ²\beta, and Ξ³\gamma are the angles between the vector and the xx-, yy-, and zz-axes, respectively.

The magnitude of a vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is calculated using: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}


Solution

(i) Find the direction cosines of Vβ€Ύ=3iβ€Ύβˆ’jβ€Ύ+2kβ€Ύ\underline{\mathbf{V}} = 3 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}

  1. Find the magnitude of Vβ€Ύ\underline{\mathbf{V}}: ∣Vβ€Ύβˆ£=(3)2+(βˆ’1)2+(2)2=9+1+4=14|\underline{\mathbf{V}}| = \sqrt{(3)^2 + (-1)^2 + (2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14}

  2. Find the direction cosines: Using the formula for the direction cosines: cos⁑α=314,cos⁑β=βˆ’114,cos⁑γ=214\cos \alpha = \frac{3}{\sqrt{14}}, \quad \cos \beta = \frac{-1}{\sqrt{14}}, \quad \cos \gamma = \frac{2}{\sqrt{14}}

Thus, the direction cosines of Vβ€Ύ\underline{\mathbf{V}} are: [314,βˆ’114,214]\left[ \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}} \right]

(ii) Find the direction cosines of Vβ€Ύ=6iβ€Ύβˆ’2jβ€Ύ+kβ€Ύ\underline{\mathbf{V}} = 6 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + \underline{\mathbf{k}}

  1. Find the magnitude of Vβ€Ύ\underline{\mathbf{V}}: ∣Vβ€Ύβˆ£=(6)2+(βˆ’2)2+(1)2=36+4+1=41|\underline{\mathbf{V}}| = \sqrt{(6)^2 + (-2)^2 + (1)^2} = \sqrt{36 + 4 + 1} = \sqrt{41}

  2. Find the direction cosines: Using the formula for the direction cosines: cos⁑α=641,cos⁑β=βˆ’241,cos⁑γ=141\cos \alpha = \frac{6}{\sqrt{41}}, \quad \cos \beta = \frac{-2}{\sqrt{41}}, \quad \cos \gamma = \frac{1}{\sqrt{41}}

Thus, the direction cosines of Vβ€Ύ\underline{\mathbf{V}} are: [641,βˆ’241,141]\left[ \frac{6}{\sqrt{41}}, \frac{-2}{\sqrt{41}}, \frac{1}{\sqrt{41}} \right]

(iii) Find the direction cosines of the vector PQ→\overrightarrow{PQ}

  1. Find the vector PQβ†’\overrightarrow{PQ}: The vector PQβ†’\overrightarrow{PQ} is given by: PQβ†’=Qβˆ’P=(1,3,1)βˆ’(2,1,5)=(1βˆ’2,3βˆ’1,1βˆ’5)=(βˆ’1,2,βˆ’4)\overrightarrow{PQ} = \mathbf{Q} - \mathbf{P} = (1, 3, 1) - (2, 1, 5) = (1 - 2, 3 - 1, 1 - 5) = (-1, 2, -4)

  2. Find the magnitude of PQβ†’\overrightarrow{PQ}: ∣PQβ†’βˆ£=(βˆ’1)2+(2)2+(βˆ’4)2=1+4+16=21|\overrightarrow{PQ}| = \sqrt{(-1)^2 + (2)^2 + (-4)^2} = \sqrt{1 + 4 + 16} = \sqrt{21}

  3. Find the direction cosines: Using the formula for the direction cosines: cos⁑α=βˆ’121,cos⁑β=221,cos⁑γ=βˆ’421\cos \alpha = \frac{-1}{\sqrt{21}}, \quad \cos \beta = \frac{2}{\sqrt{21}}, \quad \cos \gamma = \frac{-4}{\sqrt{21}}

Thus, the direction cosines of PQβ†’\overrightarrow{PQ} are: [βˆ’121,221,βˆ’421]\left[ \frac{-1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{-4}{\sqrt{21}} \right]


Key Formulas or Methods Used

  • Magnitude of a Vector: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Direction Cosines: cos⁑α=vx∣v∣,cos⁑β=vy∣v∣,cos⁑γ=vz∣v∣\cos \alpha = \frac{v_x}{|\mathbf{v}|}, \quad \cos \beta = \frac{v_y}{|\mathbf{v}|}, \quad \cos \gamma = \frac{v_z}{|\mathbf{v}|}


Summary of Steps

  1. (i) Find the magnitude of Vβ€Ύ=3iβ€Ύβˆ’jβ€Ύ+2kβ€Ύ\underline{\mathbf{V}} = 3 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}, then calculate the direction cosines by dividing each component by the magnitude.
  2. (ii) Find the magnitude of Vβ€Ύ=6iβ€Ύβˆ’2jβ€Ύ+kβ€Ύ\underline{\mathbf{V}} = 6 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + \underline{\mathbf{k}}, then calculate the direction cosines.
  3. (iii) Find the vector PQ→\overrightarrow{PQ}, then calculate its magnitude and direction cosines.
  4. The direction cosines are:
    • (i) [314,βˆ’114,214]\left[ \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}} \right]
    • (ii) [641,βˆ’241,141]\left[ \frac{6}{\sqrt{41}}, \frac{-2}{\sqrt{41}}, \frac{1}{\sqrt{41}} \right]
    • (iii) [βˆ’121,221,βˆ’421]\left[ \frac{-1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{-4}{\sqrt{21}} \right]