Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-2

Question Statement

Given vectors:

  • Uβ€Ύ=iβ€Ύβˆ’2jβ€Ύβˆ’kβ€Ύ\underline{U} = \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}
  • Vβ€Ύ=3iβ€Ύβˆ’2j+2kβ€Ύ\underline{V} = 3 \underline{\mathbf{i}} - 2 \mathbf{j} + 2 \underline{k}
  • Wβ€Ύ=5iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ\underline{W} = 5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 3 \underline{\mathbf{k}}

Find the following:

  1. (i) Uβ€Ύ+2Vβ€Ύ+Wβ€Ύ\underline{U} + 2 \underline{V} + \underline{W}
  2. (ii) Vβ€Ύβˆ’3Wβ€Ύ\underline{V} - 3 \underline{W}
  3. (iii) ∣3Vβ€Ύ+Wβ€Ύβˆ£| 3 \underline{V} + \underline{W} |

Background and Explanation

In this problem, we are asked to perform operations on vectors. The key vector operations involved are:

  • Vector Addition: Add the corresponding components of two vectors.
  • Scalar Multiplication: Multiply each component of the vector by a scalar.
  • Magnitude of a Vector: The magnitude of a vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is given by: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

These operations are fundamental in vector algebra and are necessary for solving the given problems.


Solution

(i) Find Uβ€Ύ+2Vβ€Ύ+Wβ€Ύ\underline{U} + 2 \underline{V} + \underline{W}

We begin by substituting the values of Uβ€Ύ\underline{U}, Vβ€Ύ\underline{V}, and Wβ€Ύ\underline{W} into the expression:

Uβ€Ύ+2Vβ€Ύ+Wβ€Ύ=(iβ€Ύβˆ’2jβ€Ύβˆ’kβ€Ύ)+2(3iβ€Ύβˆ’2jβ€Ύ+2kβ€Ύ)+(5iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ)\underline{U} + 2 \underline{V} + \underline{W} = (\underline{\mathbf{i}} - 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}) + 2(3 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}) + (5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 3 \underline{\mathbf{k}})

Now, let’s simplify each term:

  • 2Vβ€Ύ=2(3iβ€Ύβˆ’2jβ€Ύ+2kβ€Ύ)=6iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ2 \underline{V} = 2(3 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}) = 6 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}

Substitute back into the equation:

Uβ€Ύ+2Vβ€Ύ+Wβ€Ύ=iβ€Ύβˆ’2jβ€Ύβˆ’kβ€Ύ+6iβ€Ύβˆ’4jβ€Ύ+4kβ€Ύ+5iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ\underline{U} + 2 \underline{V} + \underline{W} = \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} - \underline{\mathbf{k}} + 6 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}} + 5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 3 \underline{\mathbf{k}}

Now combine like terms:

  • For i\mathbf{i}: 1+6+5=12i1 + 6 + 5 = 12 \mathbf{i}
  • For j\mathbf{j}: βˆ’2βˆ’4βˆ’1=βˆ’7j-2 - 4 - 1 = -7 \mathbf{j}
  • For k\mathbf{k}: βˆ’1+4+3=6k-1 + 4 + 3 = 6 \mathbf{k}

Thus, the result is:

Uβ€Ύ+2Vβ€Ύ+Wβ€Ύ=12iβ€Ύβˆ’7jβ€Ύ+6kβ€Ύ\underline{U} + 2 \underline{V} + \underline{W} = 12 \underline{\mathbf{i}} - 7 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}

(ii) Find Vβ€Ύβˆ’3Wβ€Ύ\underline{V} - 3 \underline{W}

Next, we subtract 3Wβ€Ύ3 \underline{W} from Vβ€Ύ\underline{V}:

3Wβ€Ύ=3(5iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ)=15iβ€Ύβˆ’3jβ€Ύ+9kβ€Ύ3 \underline{W} = 3(5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 3 \underline{\mathbf{k}}) = 15 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 9 \underline{\mathbf{k}}

Now subtract:

Vβ€Ύβˆ’3Wβ€Ύ=(3iβ€Ύβˆ’2jβ€Ύ+2kβ€Ύ)βˆ’(15iβ€Ύβˆ’3jβ€Ύ+9kβ€Ύ)\underline{V} - 3 \underline{W} = (3 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}) - (15 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 9 \underline{\mathbf{k}})

Simplify by subtracting the components:

  • For i\mathbf{i}: 3βˆ’15=βˆ’12i3 - 15 = -12 \mathbf{i}
  • For j\mathbf{j}: βˆ’2βˆ’(βˆ’3)=βˆ’2+3=1j-2 - (-3) = -2 + 3 = 1 \mathbf{j}
  • For k\mathbf{k}: 2βˆ’9=βˆ’7k2 - 9 = -7 \mathbf{k}

Thus, the result is:

Vβ€Ύβˆ’3Wβ€Ύ=βˆ’12iβ€Ύ+jβ€Ύβˆ’7kβ€Ύ\underline{V} - 3 \underline{W} = -12 \underline{\mathbf{i}} + \underline{\mathbf{j}} - 7 \underline{\mathbf{k}}

(iii) Find ∣3Vβ€Ύ+Wβ€Ύβˆ£| 3 \underline{V} + \underline{W} |

Now we calculate the magnitude of 3Vβ€Ύ+Wβ€Ύ3 \underline{V} + \underline{W}.

First, find 3Vβ€Ύ3 \underline{V}:

3Vβ€Ύ=3(3iβ€Ύβˆ’2jβ€Ύ+2kβ€Ύ)=9iβ€Ύβˆ’6jβ€Ύ+6kβ€Ύ3 \underline{V} = 3(3 \underline{\mathbf{i}} - 2 \underline{\mathbf{j}} + 2 \underline{\mathbf{k}}) = 9 \underline{\mathbf{i}} - 6 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}

Now add Wβ€Ύ\underline{W}:

3Vβ€Ύ+Wβ€Ύ=(9iβ€Ύβˆ’6jβ€Ύ+6kβ€Ύ)+(5iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ)3 \underline{V} + \underline{W} = (9 \underline{\mathbf{i}} - 6 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}) + (5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + 3 \underline{\mathbf{k}})

Combine like terms:

  • For i\mathbf{i}: 9+5=14i9 + 5 = 14 \mathbf{i}
  • For j\mathbf{j}: βˆ’6βˆ’1=βˆ’7j-6 - 1 = -7 \mathbf{j}
  • For k\mathbf{k}: 6+3=9k6 + 3 = 9 \mathbf{k}

Thus:

3Vβ€Ύ+Wβ€Ύ=14iβ€Ύβˆ’7jβ€Ύ+9kβ€Ύ3 \underline{V} + \underline{W} = 14 \underline{\mathbf{i}} - 7 \underline{\mathbf{j}} + 9 \underline{\mathbf{k}}

Finally, calculate the magnitude:

∣3Vβ€Ύ+Wβ€Ύβˆ£=(14)2+(βˆ’7)2+(9)2=196+49+81=326|3 \underline{V} + \underline{W}| = \sqrt{(14)^2 + (-7)^2 + (9)^2} = \sqrt{196 + 49 + 81} = \sqrt{326}

Key Formulas or Methods Used

  • Vector Addition: u+v=(ux+vx)i+(uy+vy)j+(uz+vz)k\mathbf{u} + \mathbf{v} = (u_x + v_x) \mathbf{i} + (u_y + v_y) \mathbf{j} + (u_z + v_z) \mathbf{k}

  • Scalar Multiplication: kv=(kβ‹…vx)i+(kβ‹…vy)j+(kβ‹…vz)kk \mathbf{v} = (k \cdot v_x) \mathbf{i} + (k \cdot v_y) \mathbf{j} + (k \cdot v_z) \mathbf{k}

  • Magnitude of a Vector: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}


Summary of Steps

  1. (i) Add Uβ€Ύ\underline{U}, 2Vβ€Ύ2 \underline{V}, and Wβ€Ύ\underline{W} by performing component-wise addition.
  2. (ii) Subtract 3Wβ€Ύ3 \underline{W} from Vβ€Ύ\underline{V} by performing component-wise subtraction.
  3. (iii) Find the vector 3Vβ€Ύ+Wβ€Ύ3 \underline{V} + \underline{W}, then calculate its magnitude by applying the formula for the magnitude of a vector.