Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-3

Question Statement

Given the following vectors, find the magnitude of each vector and write their direction cosines:

(i) Vβ€Ύ=2iβ€Ύ+3jβ€Ύ+4kβ€Ύ\underline{\mathbf{V}} = 2 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}} (ii) Vβ€Ύ=iβ€Ύβˆ’jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} - \underline{k} (iii) Vβ€Ύ=4iβ€Ύβˆ’5jβ€Ύ+0kβ€Ύ\underline{\mathbf{V}} = 4 \underline{\mathbf{i}} - 5 \underline{\mathbf{j}} + 0 \underline{\mathbf{k}}


Background and Explanation

To solve this problem, you need to know the following concepts:

  • Magnitude of a Vector: The magnitude of a vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is calculated as: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Direction Cosines: The direction cosines of a vector v=(vx,vy,vz)\mathbf{v} = (v_x, v_y, v_z) are the cosines of the angles that the vector makes with the xx-, yy-, and zz-axes. They are given by: cos⁑α=vx∣v∣,cos⁑β=vy∣v∣,cos⁑γ=vz∣v∣\cos \alpha = \frac{v_x}{|\mathbf{v}|}, \quad \cos \beta = \frac{v_y}{|\mathbf{v}|}, \quad \cos \gamma = \frac{v_z}{|\mathbf{v}|}

These two formulas are key to finding both the magnitude and the direction cosines of any given vector.


Solution

(i) Find the magnitude and direction cosines of Vβ€Ύ=2iβ€Ύ+3jβ€Ύ+4kβ€Ύ\underline{\mathbf{V}} = 2 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} + 4 \underline{\mathbf{k}}

  1. Magnitude: The magnitude of Vβ€Ύ\underline{\mathbf{V}} is calculated using the formula for the magnitude of a vector:
∣Vβ€Ύβˆ£=(2)2+(3)2+(4)2 |\underline{\mathbf{V}}| = \sqrt{(2)^2 + (3)^2 + (4)^2}

Calculate each squared term:

∣Vβ€Ύβˆ£=4+9+16=29 |\underline{\mathbf{V}}| = \sqrt{4 + 9 + 16} = \sqrt{29}

So, the magnitude of Vβ€Ύ\underline{\mathbf{V}} is:

∣Vβ€Ύβˆ£=29 |\underline{\mathbf{V}}| = \sqrt{29}
  1. Direction Cosines: The direction cosines of Vβ€Ύ\underline{\mathbf{V}} are calculated by dividing each component of the vector by its magnitude:
cos⁑α=229,cos⁑β=329,cos⁑γ=429 \cos \alpha = \frac{2}{\sqrt{29}}, \quad \cos \beta = \frac{3}{\sqrt{29}}, \quad \cos \gamma = \frac{4}{\sqrt{29}}

Therefore, the direction cosines of Vβ€Ύ\underline{\mathbf{V}} are:

[229,329,429] \left[\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right]

(ii) Find the magnitude and direction cosines of Vβ€Ύ=iβ€Ύβˆ’jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} - \underline{k}

  1. Magnitude: The magnitude of Vβ€Ύ\underline{\mathbf{V}} is:
∣Vβ€Ύβˆ£=(1)2+(βˆ’1)2+(βˆ’1)2 |\underline{\mathbf{V}}| = \sqrt{(1)^2 + (-1)^2 + (-1)^2}

Calculate each squared term:

∣Vβ€Ύβˆ£=1+1+1=3 |\underline{\mathbf{V}}| = \sqrt{1 + 1 + 1} = \sqrt{3}

So, the magnitude of Vβ€Ύ\underline{\mathbf{V}} is:

∣Vβ€Ύβˆ£=3 |\underline{\mathbf{V}}| = \sqrt{3}
  1. Direction Cosines: The direction cosines of Vβ€Ύ\underline{\mathbf{V}} are:
cos⁑α=13,cos⁑β=13,cos⁑γ=13 \cos \alpha = \frac{1}{\sqrt{3}}, \quad \cos \beta = \frac{1}{\sqrt{3}}, \quad \cos \gamma = \frac{1}{\sqrt{3}}

Therefore, the direction cosines of Vβ€Ύ\underline{\mathbf{V}} are:

[13,13,13] \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]

(iii) Find the magnitude and direction cosines of Vβ€Ύ=4iβ€Ύβˆ’5jβ€Ύ+0kβ€Ύ\underline{\mathbf{V}} = 4 \underline{\mathbf{i}} - 5 \underline{\mathbf{j}} + 0 \underline{\mathbf{k}}

  1. Magnitude: The magnitude of Vβ€Ύ\underline{\mathbf{V}} is:
∣Vβ€Ύβˆ£=(4)2+(βˆ’5)2+(0)2 |\underline{\mathbf{V}}| = \sqrt{(4)^2 + (-5)^2 + (0)^2}

Calculate each squared term:

∣Vβ€Ύβˆ£=16+25+0=41 |\underline{\mathbf{V}}| = \sqrt{16 + 25 + 0} = \sqrt{41}

So, the magnitude of Vβ€Ύ\underline{\mathbf{V}} is:

∣Vβ€Ύβˆ£=41 |\underline{\mathbf{V}}| = \sqrt{41}
  1. Direction Cosines: The direction cosines of Vβ€Ύ\underline{\mathbf{V}} are:
cos⁑α=441,cos⁑β=βˆ’541,cos⁑γ=041=0 \cos \alpha = \frac{4}{\sqrt{41}}, \quad \cos \beta = \frac{-5}{\sqrt{41}}, \quad \cos \gamma = \frac{0}{\sqrt{41}} = 0

Therefore, the direction cosines of Vβ€Ύ\underline{\mathbf{V}} are:

[441,βˆ’541,0] \left[\frac{4}{\sqrt{41}}, \frac{-5}{\sqrt{41}}, 0\right]

Key Formulas or Methods Used

  • Magnitude of a Vector: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Direction Cosines: cos⁑α=vx∣v∣,cos⁑β=vy∣v∣,cos⁑γ=vz∣v∣\cos \alpha = \frac{v_x}{|\mathbf{v}|}, \quad \cos \beta = \frac{v_y}{|\mathbf{v}|}, \quad \cos \gamma = \frac{v_z}{|\mathbf{v}|}


Summary of Steps

  1. (i) Find the magnitude of Vβ€Ύ\underline{\mathbf{V}} using the formula ∣Vβ€Ύβˆ£=vx2+vy2+vz2|\underline{\mathbf{V}}| = \sqrt{v_x^2 + v_y^2 + v_z^2}, then compute the direction cosines by dividing each component by the magnitude.
  2. (ii) Repeat for Vβ€Ύ=iβ€Ύβˆ’jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} - \underline{k}.
  3. (iii) Similarly, find the magnitude and direction cosines for Vβ€Ύ=4iβ€Ύβˆ’5jβ€Ύ+0kβ€Ύ\underline{\mathbf{V}} = 4 \underline{\mathbf{i}} - 5 \underline{\mathbf{j}} + 0 \underline{\mathbf{k}}.