Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-5

Question Statement

Find the unit vector in the direction of the given vector: Vβ€Ύ=iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}


Background and Explanation

A unit vector is a vector that has a magnitude of 1 but points in the same direction as the given vector. To find the unit vector in the direction of any vector V\mathbf{V}, we use the following formula: V^=V∣V∣\hat{V} = \frac{\mathbf{V}}{|\mathbf{V}|}

Where:

  • V^\hat{V} is the unit vector in the direction of V\mathbf{V}.
  • ∣V∣|\mathbf{V}| is the magnitude of vector V\mathbf{V}.

To find the magnitude of a vector V=vxi+vyj+vzk\mathbf{V} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}, we use: ∣V∣=vx2+vy2+vz2|\mathbf{V}| = \sqrt{v_x^2 + v_y^2 + v_z^2}


Solution

We are given the vector: Vβ€Ύ=iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{V}} = \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}

Step 1: Find the magnitude of the vector

The magnitude of a vector V=vxi+vyj+vzk\mathbf{V} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is: ∣V∣=vx2+vy2+vz2|\mathbf{V}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

For our vector:

  • vx=1v_x = 1 (coefficient of i\mathbf{i}),
  • vy=2v_y = 2 (coefficient of j\mathbf{j}),
  • vz=βˆ’1v_z = -1 (coefficient of k\mathbf{k}).

So, the magnitude is: ∣V∣=12+22+(βˆ’1)2=1+4+1=6|\mathbf{V}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}

Step 2: Find the unit vector

To find the unit vector, we divide each component of the vector V\mathbf{V} by its magnitude ∣V∣|\mathbf{V}|. This gives the unit vector V^\hat{V} in the direction of V\mathbf{V}: V^=V∣V∣\hat{V} = \frac{\mathbf{V}}{|\mathbf{V}|}

Substituting in the values: V^=16(iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ)\hat{V} = \frac{1}{\sqrt{6}} \left( \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}} \right)

Thus, the unit vector is: V^=16iβ€Ύ+26jβ€Ύβˆ’16kβ€Ύ\hat{V} = \frac{1}{\sqrt{6}} \underline{\mathbf{i}} + \frac{2}{\sqrt{6}} \underline{\mathbf{j}} - \frac{1}{\sqrt{6}} \underline{\mathbf{k}}


Key Formulas or Methods Used

  • Magnitude of a vector: ∣V∣=vx2+vy2+vz2|\mathbf{V}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Unit vector: V^=V∣V∣\hat{V} = \frac{\mathbf{V}}{|\mathbf{V}|}


Summary of Steps

  1. Calculate the magnitude of the given vector V\mathbf{V} using the formula ∣V∣=vx2+vy2+vz2|\mathbf{V}| = \sqrt{v_x^2 + v_y^2 + v_z^2}.
  2. Find the unit vector by dividing each component of V\mathbf{V} by its magnitude.
  3. The resulting unit vector in the direction of V\mathbf{V} is: V^=16iβ€Ύ+26jβ€Ύβˆ’16kβ€Ύ\hat{V} = \frac{1}{\sqrt{6}} \underline{\mathbf{i}} + \frac{2}{\sqrt{6}} \underline{\mathbf{j}} - \frac{1}{\sqrt{6}} \underline{\mathbf{k}}