Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-6

Question Statement

Given the vectors:

  • aβ€Ύ=3iβ€Ύβˆ’jβ€Ύβˆ’4kβ€Ύ\underline{\mathbf{a}} = 3 \underline{\mathbf{i}} - \underline{\mathbf{j}} - 4 \underline{\mathbf{k}}
  • bβ€Ύ=βˆ’2iβ€Ύβˆ’4jβ€Ύβˆ’3kβ€Ύ\underline{\mathbf{b}} = -2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}}
  • cβ€Ύ=iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{c}} = \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}

Find a unit vector parallel to the vector: 3aβ€Ύβˆ’2bβ€Ύ+4cβ€Ύ\mathbf{3} \underline{a} - 2 \underline{b} + 4 \underline{c}


Background and Explanation

To solve this problem, we need to:

  1. Calculate the resultant vector by applying the operations on the given vectors.
  2. Find the magnitude of the resultant vector.
  3. Convert the resultant vector into a unit vector by dividing each component of the vector by its magnitude.

A unit vector is a vector with a magnitude of 1, and it points in the same direction as the original vector. To find a unit vector, we divide the vector by its magnitude: d^=d∣d∣\hat{d} = \frac{\mathbf{d}}{|\mathbf{d}|}

Where:

  • d\mathbf{d} is the resultant vector.
  • ∣d∣|\mathbf{d}| is the magnitude of the vector d\mathbf{d}.

Solution

Step 1: Find the resultant vector d=3aβ€Ύβˆ’2bβ€Ύ+4cβ€Ύ\mathbf{d} = 3 \underline{a} - 2 \underline{b} + 4 \underline{c}

Start by calculating 3aβ€Ύ3 \underline{a}, βˆ’2bβ€Ύ-2 \underline{b}, and 4cβ€Ύ4 \underline{c}.

  1. Calculate 3aβ€Ύ3 \underline{a}: 3aβ€Ύ=3(3iβ€Ύβˆ’jβ€Ύβˆ’4kβ€Ύ)=9iβ€Ύβˆ’3jβ€Ύβˆ’12kβ€Ύ3 \underline{a} = 3(3 \underline{i} - \underline{j} - 4 \underline{k}) = 9 \underline{i} - 3 \underline{j} - 12 \underline{k}

  2. Calculate βˆ’2bβ€Ύ-2 \underline{b}: βˆ’2bβ€Ύ=βˆ’2(βˆ’2iβ€Ύβˆ’4jβ€Ύβˆ’3kβ€Ύ)=4iβ€Ύ+8jβ€Ύ+6kβ€Ύ-2 \underline{b} = -2(-2 \underline{i} - 4 \underline{j} - 3 \underline{k}) = 4 \underline{i} + 8 \underline{j} + 6 \underline{k}

  3. Calculate 4cβ€Ύ4 \underline{c}: 4cβ€Ύ=4(iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ)=4iβ€Ύ+8jβ€Ύβˆ’4kβ€Ύ4 \underline{c} = 4(\underline{i} + 2 \underline{j} - \underline{k}) = 4 \underline{i} + 8 \underline{j} - 4 \underline{k}

Now, combine all the terms to find the resultant vector d\mathbf{d}: d=(9iβ€Ύβˆ’3jβ€Ύβˆ’12kβ€Ύ)+(4iβ€Ύ+8jβ€Ύ+6kβ€Ύ)+(4iβ€Ύ+8jβ€Ύβˆ’4kβ€Ύ)\mathbf{d} = (9 \underline{i} - 3 \underline{j} - 12 \underline{k}) + (4 \underline{i} + 8 \underline{j} + 6 \underline{k}) + (4 \underline{i} + 8 \underline{j} - 4 \underline{k})

Combine the like components:

  • For i\mathbf{i}: 9+4+4=17iβ€Ύ9 + 4 + 4 = 17 \underline{i}
  • For j\mathbf{j}: βˆ’3+8+8=13jβ€Ύ-3 + 8 + 8 = 13 \underline{j}
  • For k\mathbf{k}: βˆ’12+6βˆ’4=βˆ’10kβ€Ύ-12 + 6 - 4 = -10 \underline{k}

Thus, the resultant vector is: d=17iβ€Ύ+13jβ€Ύβˆ’10kβ€Ύ\mathbf{d} = 17 \underline{i} + 13 \underline{j} - 10 \underline{k}

Step 2: Find the magnitude of d\mathbf{d}

The magnitude of a vector d=dxiβ€Ύ+dyjβ€Ύ+dzkβ€Ύ\mathbf{d} = d_x \underline{i} + d_y \underline{j} + d_z \underline{k} is given by: ∣d∣=dx2+dy2+dz2|\mathbf{d}| = \sqrt{d_x^2 + d_y^2 + d_z^2}

Substitute the components of d\mathbf{d}: ∣d∣=(17)2+(13)2+(βˆ’10)2|\mathbf{d}| = \sqrt{(17)^2 + (13)^2 + (-10)^2}

Calculate each term: ∣d∣=289+169+100=558|\mathbf{d}| = \sqrt{289 + 169 + 100} = \sqrt{558}

So, the magnitude of d\mathbf{d} is: ∣d∣=558|\mathbf{d}| = \sqrt{558}

Step 3: Find the unit vector in the direction of d\mathbf{d}

Now, we find the unit vector by dividing each component of d\mathbf{d} by its magnitude ∣d∣|\mathbf{d}|: d^=d∣d∣=17iβ€Ύ+13jβ€Ύβˆ’10kβ€Ύ558\hat{\mathbf{d}} = \frac{\mathbf{d}}{|\mathbf{d}|} = \frac{17 \underline{i} + 13 \underline{j} - 10 \underline{k}}{\sqrt{558}}

Thus, the unit vector is: d^=17558iβ€Ύ+13558jβ€Ύβˆ’10558kβ€Ύ\hat{\mathbf{d}} = \frac{17}{\sqrt{558}} \underline{i} + \frac{13}{\sqrt{558}} \underline{j} - \frac{10}{\sqrt{558}} \underline{k}


Key Formulas or Methods Used

  • Magnitude of a vector: ∣d∣=dx2+dy2+dz2|\mathbf{d}| = \sqrt{d_x^2 + d_y^2 + d_z^2}

  • Unit vector: d^=d∣d∣\hat{\mathbf{d}} = \frac{\mathbf{d}}{|\mathbf{d}|}


Summary of Steps

  1. Find the components of the vector d=3aβ€Ύβˆ’2bβ€Ύ+4cβ€Ύ\mathbf{d} = 3 \underline{a} - 2 \underline{b} + 4 \underline{c} by performing the scalar multiplication and vector addition.
  2. Calculate the magnitude of the resultant vector d\mathbf{d} using the formula for the magnitude of a vector.
  3. Find the unit vector by dividing each component of d\mathbf{d} by its magnitude.
  4. The unit vector parallel to 3aβ€Ύβˆ’2bβ€Ύ+4cβ€Ύ\mathbf{3} \underline{a} - 2 \underline{b} + 4 \underline{c} is: d^=17558iβ€Ύ+13558jβ€Ύβˆ’10558kβ€Ύ\hat{\mathbf{d}} = \frac{17}{\sqrt{558}} \underline{i} + \frac{13}{\sqrt{558}} \underline{j} - \frac{10}{\sqrt{558}} \underline{k}