Question Statement
Given the vectors:
a βΎ = 3 i βΎ β j βΎ β 4 k βΎ \underline{\mathbf{a}} = 3 \underline{\mathbf{i}} - \underline{\mathbf{j}} - 4 \underline{\mathbf{k}} a β = 3 i β β j β β 4 k β
b βΎ = β 2 i βΎ β 4 j βΎ β 3 k βΎ \underline{\mathbf{b}} = -2 \underline{\mathbf{i}} - 4 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}} b β = β 2 i β β 4 j β β 3 k β
c βΎ = i βΎ + 2 j βΎ β k βΎ \underline{\mathbf{c}} = \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}} c β = i β + 2 j β β k β
Find a unit vector parallel to the vector:
3 a βΎ β 2 b βΎ + 4 c βΎ \mathbf{3} \underline{a} - 2 \underline{b} + 4 \underline{c} 3 a β β 2 b β + 4 c β
Background and Explanation
To solve this problem, we need to:
Calculate the resultant vector by applying the operations on the given vectors.
Find the magnitude of the resultant vector.
Convert the resultant vector into a unit vector by dividing each component of the vector by its magnitude.
A unit vector is a vector with a magnitude of 1, and it points in the same direction as the original vector. To find a unit vector, we divide the vector by its magnitude:
d ^ = d β£ d β£ \hat{d} = \frac{\mathbf{d}}{|\mathbf{d}|} d ^ = β£ d β£ d β
Where:
d \mathbf{d} d is the resultant vector.
β£ d β£ |\mathbf{d}| β£ d β£ is the magnitude of the vector d \mathbf{d} d .
Solution
Step 1: Find the resultant vector d = 3 a βΎ β 2 b βΎ + 4 c βΎ \mathbf{d} = 3 \underline{a} - 2 \underline{b} + 4 \underline{c} d = 3 a β β 2 b β + 4 c β
Start by calculating 3 a βΎ 3 \underline{a} 3 a β , β 2 b βΎ -2 \underline{b} β 2 b β , and 4 c βΎ 4 \underline{c} 4 c β .
Calculate 3 a βΎ 3 \underline{a} 3 a β :
3 a βΎ = 3 ( 3 i βΎ β j βΎ β 4 k βΎ ) = 9 i βΎ β 3 j βΎ β 12 k βΎ 3 \underline{a} = 3(3 \underline{i} - \underline{j} - 4 \underline{k}) = 9 \underline{i} - 3 \underline{j} - 12 \underline{k} 3 a β = 3 ( 3 i β β j β β 4 k β ) = 9 i β β 3 j β β 12 k β
Calculate β 2 b βΎ -2 \underline{b} β 2 b β :
β 2 b βΎ = β 2 ( β 2 i βΎ β 4 j βΎ β 3 k βΎ ) = 4 i βΎ + 8 j βΎ + 6 k βΎ -2 \underline{b} = -2(-2 \underline{i} - 4 \underline{j} - 3 \underline{k}) = 4 \underline{i} + 8 \underline{j} + 6 \underline{k} β 2 b β = β 2 ( β 2 i β β 4 j β β 3 k β ) = 4 i β + 8 j β + 6 k β
Calculate 4 c βΎ 4 \underline{c} 4 c β :
4 c βΎ = 4 ( i βΎ + 2 j βΎ β k βΎ ) = 4 i βΎ + 8 j βΎ β 4 k βΎ 4 \underline{c} = 4(\underline{i} + 2 \underline{j} - \underline{k}) = 4 \underline{i} + 8 \underline{j} - 4 \underline{k} 4 c β = 4 ( i β + 2 j β β k β ) = 4 i β + 8 j β β 4 k β
Now, combine all the terms to find the resultant vector d \mathbf{d} d :
d = ( 9 i βΎ β 3 j βΎ β 12 k βΎ ) + ( 4 i βΎ + 8 j βΎ + 6 k βΎ ) + ( 4 i βΎ + 8 j βΎ β 4 k βΎ ) \mathbf{d} = (9 \underline{i} - 3 \underline{j} - 12 \underline{k}) + (4 \underline{i} + 8 \underline{j} + 6 \underline{k}) + (4 \underline{i} + 8 \underline{j} - 4 \underline{k}) d = ( 9 i β β 3 j β β 12 k β ) + ( 4 i β + 8 j β + 6 k β ) + ( 4 i β + 8 j β β 4 k β )
Combine the like components:
For i \mathbf{i} i : 9 + 4 + 4 = 17 i βΎ 9 + 4 + 4 = 17 \underline{i} 9 + 4 + 4 = 17 i β
For j \mathbf{j} j : β 3 + 8 + 8 = 13 j βΎ -3 + 8 + 8 = 13 \underline{j} β 3 + 8 + 8 = 13 j β
For k \mathbf{k} k : β 12 + 6 β 4 = β 10 k βΎ -12 + 6 - 4 = -10 \underline{k} β 12 + 6 β 4 = β 10 k β
Thus, the resultant vector is:
d = 17 i βΎ + 13 j βΎ β 10 k βΎ \mathbf{d} = 17 \underline{i} + 13 \underline{j} - 10 \underline{k} d = 17 i β + 13 j β β 10 k β
Step 2: Find the magnitude of d \mathbf{d} d
The magnitude of a vector d = d x i βΎ + d y j βΎ + d z k βΎ \mathbf{d} = d_x \underline{i} + d_y \underline{j} + d_z \underline{k} d = d x β i β + d y β j β + d z β k β is given by:
β£ d β£ = d x 2 + d y 2 + d z 2 |\mathbf{d}| = \sqrt{d_x^2 + d_y^2 + d_z^2} β£ d β£ = d x 2 β + d y 2 β + d z 2 β β
Substitute the components of d \mathbf{d} d :
β£ d β£ = ( 17 ) 2 + ( 13 ) 2 + ( β 10 ) 2 |\mathbf{d}| = \sqrt{(17)^2 + (13)^2 + (-10)^2} β£ d β£ = ( 17 ) 2 + ( 13 ) 2 + ( β 10 ) 2 β
Calculate each term:
β£ d β£ = 289 + 169 + 100 = 558 |\mathbf{d}| = \sqrt{289 + 169 + 100} = \sqrt{558} β£ d β£ = 289 + 169 + 100 β = 558 β
So, the magnitude of d \mathbf{d} d is:
β£ d β£ = 558 |\mathbf{d}| = \sqrt{558} β£ d β£ = 558 β
Step 3: Find the unit vector in the direction of d \mathbf{d} d
Now, we find the unit vector by dividing each component of d \mathbf{d} d by its magnitude β£ d β£ |\mathbf{d}| β£ d β£ :
d ^ = d β£ d β£ = 17 i βΎ + 13 j βΎ β 10 k βΎ 558 \hat{\mathbf{d}} = \frac{\mathbf{d}}{|\mathbf{d}|} = \frac{17 \underline{i} + 13 \underline{j} - 10 \underline{k}}{\sqrt{558}} d ^ = β£ d β£ d β = 558 β 17 i β + 13 j β β 10 k β β
Thus, the unit vector is:
d ^ = 17 558 i βΎ + 13 558 j βΎ β 10 558 k βΎ \hat{\mathbf{d}} = \frac{17}{\sqrt{558}} \underline{i} + \frac{13}{\sqrt{558}} \underline{j} - \frac{10}{\sqrt{558}} \underline{k} d ^ = 558 β 17 β i β + 558 β 13 β j β β 558 β 10 β k β
Magnitude of a vector :
β£ d β£ = d x 2 + d y 2 + d z 2 |\mathbf{d}| = \sqrt{d_x^2 + d_y^2 + d_z^2} β£ d β£ = d x 2 β + d y 2 β + d z 2 β β
Unit vector :
d ^ = d β£ d β£ \hat{\mathbf{d}} = \frac{\mathbf{d}}{|\mathbf{d}|} d ^ = β£ d β£ d β
Summary of Steps
Find the components of the vector d = 3 a βΎ β 2 b βΎ + 4 c βΎ \mathbf{d} = 3 \underline{a} - 2 \underline{b} + 4 \underline{c} d = 3 a β β 2 b β + 4 c β by performing the scalar multiplication and vector addition.
Calculate the magnitude of the resultant vector d \mathbf{d} d using the formula for the magnitude of a vector.
Find the unit vector by dividing each component of d \mathbf{d} d by its magnitude.
The unit vector parallel to 3 a βΎ β 2 b βΎ + 4 c βΎ \mathbf{3} \underline{a} - 2 \underline{b} + 4 \underline{c} 3 a β β 2 b β + 4 c β is:
d ^ = 17 558 i βΎ + 13 558 j βΎ β 10 558 k βΎ \hat{\mathbf{d}} = \frac{17}{\sqrt{558}} \underline{i} + \frac{13}{\sqrt{558}} \underline{j} - \frac{10}{\sqrt{558}} \underline{k} d ^ = 558 β 17 β i β + 558 β 13 β j β β 558 β 10 β k β