Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.2 Q-7

Question Statement

Find the vectors that satisfy the following conditions:

  1. (i) A vector whose magnitude is 4 and is parallel to 2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}.
  2. (ii) A vector whose magnitude is 2 and is parallel to βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}.

Background and Explanation

To solve these problems, we need to apply two key concepts:

  1. Magnitude of a Vector: The magnitude of a vector v=vxi+vyj+vzk\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} is calculated as: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  2. Unit Vector: A unit vector has a magnitude of 1 and points in the same direction as the original vector. To find a unit vector v^\hat{v} in the direction of a vector v\mathbf{v}, we divide each component of v\mathbf{v} by its magnitude: v^=v∣v∣\hat{v} = \frac{\mathbf{v}}{|\mathbf{v}|}

Once we have the unit vector, we can easily scale it to obtain the required magnitude.


Solution

(i) Find a vector whose magnitude is 4 and is parallel to 2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}

  1. Find the magnitude of the given vector: The given vector is 2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}. Its magnitude is:
∣V∣=(2)2+(βˆ’3)2+(6)2=4+9+36=49=7 |\mathbf{V}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7
  1. Find the unit vector in the direction of the given vector: The unit vector V^\hat{V} in the direction of the vector V\mathbf{V} is obtained by dividing each component of V\mathbf{V} by its magnitude:
V^=V∣V∣=2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ7 \widehat{V} = \frac{\mathbf{V}}{|\mathbf{V}|} = \frac{2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}}{7}
  1. Scale the unit vector to obtain a vector of magnitude 4: The required vector is obtained by multiplying the unit vector by 4:
4V^=4(2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ)7=87iβ€Ύβˆ’127jβ€Ύβˆ’247kβ€Ύ 4 \hat{V} = \frac{4 \left( 2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}} \right)}{7} = \frac{8}{7} \underline{\mathbf{i}} - \frac{12}{7} \underline{\mathbf{j}} - \frac{24}{7} \underline{\mathbf{k}}

Thus, the required vector is: 87iβ€Ύβˆ’127jβ€Ύβˆ’247kβ€Ύ\frac{8}{7} \underline{\mathbf{i}} - \frac{12}{7} \underline{\mathbf{j}} - \frac{24}{7} \underline{\mathbf{k}}

(ii) Find a vector whose magnitude is 2 and is parallel to βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}

  1. Find the magnitude of the given vector: The given vector is βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}. Its magnitude is:
∣V∣=(βˆ’1)2+(1)2+(1)2=1+1+1=3 |\mathbf{V}| = \sqrt{(-1)^2 + (1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3}
  1. Find the unit vector in the direction of the given vector: The unit vector V^\hat{V} in the direction of V\mathbf{V} is obtained by dividing each component of V\mathbf{V} by its magnitude:
V^=V∣V∣=βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ3 \widehat{V} = \frac{\mathbf{V}}{|\mathbf{V}|} = \frac{-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}}{\sqrt{3}}
  1. Scale the unit vector to obtain a vector of magnitude 2: The required vector is obtained by multiplying the unit vector by 2:
2V^=2(βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ)3=23iβ€Ύ+23jβ€Ύ+23kβ€Ύ 2 \hat{V} = \frac{2 \left( -\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}} \right)}{\sqrt{3}} = \frac{2}{\sqrt{3}} \underline{\mathbf{i}} + \frac{2}{\sqrt{3}} \underline{\mathbf{j}} + \frac{2}{\sqrt{3}} \underline{\mathbf{k}}

Thus, the required vector is: 23iβ€Ύ+23jβ€Ύ+23kβ€Ύ\frac{2}{\sqrt{3}} \underline{\mathbf{i}} + \frac{2}{\sqrt{3}} \underline{\mathbf{j}} + \frac{2}{\sqrt{3}} \underline{\mathbf{k}}


Key Formulas or Methods Used

  • Magnitude of a vector: ∣v∣=vx2+vy2+vz2|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

  • Unit vector: v^=v∣v∣\hat{v} = \frac{\mathbf{v}}{|\mathbf{v}|}

  • Scaling a vector: To change the magnitude of a vector without changing its direction, multiply each component by the desired scalar.


Summary of Steps

  1. (i) Calculate the magnitude of the given vector 2iβ€Ύβˆ’3jβ€Ύ+6kβ€Ύ2 \underline{\mathbf{i}} - 3 \underline{\mathbf{j}} + 6 \underline{\mathbf{k}}, find the unit vector, and scale it to obtain the required magnitude of 4.
  2. (ii) Calculate the magnitude of the given vector βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}, find the unit vector, and scale it to obtain the required magnitude of 2.
  3. The required vectors are:
    • 87iβ€Ύβˆ’127jβ€Ύβˆ’247kβ€Ύ\frac{8}{7} \underline{\mathbf{i}} - \frac{12}{7} \underline{\mathbf{j}} - \frac{24}{7} \underline{\mathbf{k}}
    • 23iβ€Ύ+23jβ€Ύ+23kβ€Ύ\frac{2}{\sqrt{3}} \underline{\mathbf{i}} + \frac{2}{\sqrt{3}} \underline{\mathbf{j}} + \frac{2}{\sqrt{3}} \underline{\mathbf{k}}