Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-1

Question Statement

Find the cosine of the angle between the following pairs of vectors: (i) Uβ€Ύ=3iβ€Ύ+jβ€Ύβˆ’kβ€Ύ,Vβ€Ύ=2iβ€Ύβˆ’3jβ€Ύ+kβ€Ύ\underline{\mathbf{U}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = 2\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + \underline{\mathbf{k}}

(ii) Uβ€Ύ=iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ,Vβ€Ύ=4iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ\underline{\mathbf{U}} = \underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = 4\underline{\mathbf{i}} - \underline{\mathbf{j}} + 3\underline{\mathbf{k}}

(iii) Uβ€Ύ=[βˆ’3,5],Vβ€Ύ=[6,βˆ’2]\underline{\mathbf{U}} = [-3, 5], \quad \underline{\mathbf{V}} = [6, -2]

(iv) Uβ€Ύ=[2,βˆ’3,1],Vβ€Ύ=[2,4,1]\underline{\mathbf{U}} = [2, -3, 1], \quad \underline{\mathbf{V}} = [2, 4, 1]


Background and Explanation

To solve this problem, we need to use the formula for the cosine of the angle between two vectors Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}}:

cos⁑θ=Uβ€Ύβ‹…Vβ€Ύβˆ£Uβ€Ύβˆ£βˆ£Vβ€Ύβˆ£\cos \theta = \frac{\underline{\mathbf{U}} \cdot \underline{\mathbf{V}}}{|\underline{\mathbf{U}}| |\underline{\mathbf{V}}|}

Where:

  • Uβ€Ύβ‹…Vβ€Ύ\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} is the dot product of the two vectors.
  • ∣Uβ€Ύβˆ£|\underline{\mathbf{U}}| and ∣Vβ€Ύβˆ£|\underline{\mathbf{V}}| are the magnitudes (lengths) of the vectors.

The dot product Uβ€Ύβ‹…Vβ€Ύ\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} for vectors Uβ€Ύ=[u1,u2,u3]\underline{\mathbf{U}} = [u_1, u_2, u_3] and Vβ€Ύ=[v1,v2,v3]\underline{\mathbf{V}} = [v_1, v_2, v_3] is computed as:

Uβ€Ύβ‹…Vβ€Ύ=u1v1+u2v2+u3v3\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = u_1v_1 + u_2v_2 + u_3v_3

The magnitude of a vector Uβ€Ύ=[u1,u2,u3]\underline{\mathbf{U}} = [u_1, u_2, u_3] is:

∣Uβ€Ύβˆ£=u12+u22+u32|\underline{\mathbf{U}}| = \sqrt{u_1^2 + u_2^2 + u_3^2}

Solution

(i) Uβ€Ύ=3iβ€Ύ+jβ€Ύβˆ’kβ€Ύ,Vβ€Ύ=2iβ€Ύβˆ’3jβ€Ύ+kβ€Ύ\underline{\mathbf{U}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = 2\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + \underline{\mathbf{k}}

First, calculate the magnitudes of Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}}:

∣Uβ€Ύβˆ£=(3)2+(1)2+(βˆ’1)2=9+1+1=11|\underline{\mathbf{U}}| = \sqrt{(3)^2 + (1)^2 + (-1)^2} = \sqrt{9 + 1 + 1} = \sqrt{11} ∣Vβ€Ύβˆ£=(2)2+(βˆ’3)2+(1)2=4+9+1=14|\underline{\mathbf{V}}| = \sqrt{(2)^2 + (-3)^2 + (1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14}

Next, compute the dot product:

Uβ€Ύβ‹…Vβ€Ύ=(3)(2)+(1)(βˆ’3)+(βˆ’1)(1)=6βˆ’3βˆ’1=2\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (3)(2) + (1)(-3) + (-1)(1) = 6 - 3 - 1 = 2

Now, substitute these values into the cosine formula:

cos⁑θ=211Γ—14=2154\cos \theta = \frac{2}{\sqrt{11} \times \sqrt{14}} = \frac{2}{\sqrt{154}}

(ii) Uβ€Ύ=iβ€Ύβˆ’3jβ€Ύ+4kβ€Ύ,Vβ€Ύ=4iβ€Ύβˆ’jβ€Ύ+3kβ€Ύ\underline{\mathbf{U}} = \underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = 4\underline{\mathbf{i}} - \underline{\mathbf{j}} + 3\underline{\mathbf{k}}

Calculate the magnitudes:

∣Uβ€Ύβˆ£=(1)2+(βˆ’3)2+(4)2=1+9+16=26|\underline{\mathbf{U}}| = \sqrt{(1)^2 + (-3)^2 + (4)^2} = \sqrt{1 + 9 + 16} = \sqrt{26} ∣Vβ€Ύβˆ£=(4)2+(βˆ’1)2+(3)2=16+1+9=26|\underline{\mathbf{V}}| = \sqrt{(4)^2 + (-1)^2 + (3)^2} = \sqrt{16 + 1 + 9} = \sqrt{26}

Now, compute the dot product:

Uβ€Ύβ‹…Vβ€Ύ=(1)(4)+(βˆ’3)(βˆ’1)+(4)(3)=4+3+12=19\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (1)(4) + (-3)(-1) + (4)(3) = 4 + 3 + 12 = 19

Substitute these values into the cosine formula:

cos⁑θ=1926Γ—26=1926\cos \theta = \frac{19}{\sqrt{26} \times \sqrt{26}} = \frac{19}{26}

(iii) Uβ€Ύ=[βˆ’3,5],Vβ€Ύ=[6,βˆ’2]\underline{\mathbf{U}} = [-3, 5], \quad \underline{\mathbf{V}} = [6, -2]

First, calculate the magnitudes:

∣Uβ€Ύβˆ£=(βˆ’3)2+(5)2=9+25=34|\underline{\mathbf{U}}| = \sqrt{(-3)^2 + (5)^2} = \sqrt{9 + 25} = \sqrt{34} ∣Vβ€Ύβˆ£=(6)2+(βˆ’2)2=36+4=40|\underline{\mathbf{V}}| = \sqrt{(6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40}

Now, compute the dot product:

Uβ€Ύβ‹…Vβ€Ύ=(βˆ’3)(6)+(5)(βˆ’2)=βˆ’18βˆ’10=βˆ’28\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (-3)(6) + (5)(-2) = -18 - 10 = -28

Substitute these values into the cosine formula:

cos⁑θ=βˆ’2834Γ—40=βˆ’281360=βˆ’282340\cos \theta = \frac{-28}{\sqrt{34} \times \sqrt{40}} = \frac{-28}{\sqrt{1360}} = \frac{-28}{2\sqrt{340}}

(iv) Uβ€Ύ=[2,βˆ’3,1],Vβ€Ύ=[2,4,1]\underline{\mathbf{U}} = [2, -3, 1], \quad \underline{\mathbf{V}} = [2, 4, 1]

First, calculate the magnitudes:

∣Uβ€Ύβˆ£=(2)2+(βˆ’3)2+(1)2=4+9+1=14|\underline{\mathbf{U}}| = \sqrt{(2)^2 + (-3)^2 + (1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} ∣Vβ€Ύβˆ£=(2)2+(4)2+(1)2=4+16+1=21|\underline{\mathbf{V}}| = \sqrt{(2)^2 + (4)^2 + (1)^2} = \sqrt{4 + 16 + 1} = \sqrt{21}

Now, compute the dot product:

Uβ€Ύβ‹…Vβ€Ύ=(2)(2)+(βˆ’3)(4)+(1)(1)=4βˆ’12+1=βˆ’7\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (2)(2) + (-3)(4) + (1)(1) = 4 - 12 + 1 = -7

Substitute these values into the cosine formula:

cos⁑θ=βˆ’714Γ—21=βˆ’7294=βˆ’776=βˆ’16\cos \theta = \frac{-7}{\sqrt{14} \times \sqrt{21}} = \frac{-7}{\sqrt{294}} = \frac{-7}{7\sqrt{6}} = \frac{-1}{\sqrt{6}}

Key Formulas or Methods Used

  • Cosine of angle between vectors:
cos⁑θ=Uβ€Ύβ‹…Vβ€Ύβˆ£Uβ€Ύβˆ£βˆ£Vβ€Ύβˆ£\cos \theta = \frac{\underline{\mathbf{U}} \cdot \underline{\mathbf{V}}}{|\underline{\mathbf{U}}| |\underline{\mathbf{V}}|}
  • Dot product of vectors:
Uβ€Ύβ‹…Vβ€Ύ=u1v1+u2v2+u3v3\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = u_1v_1 + u_2v_2 + u_3v_3
  • Magnitude of a vector:
∣Uβ€Ύβˆ£=u12+u22+u32|\underline{\mathbf{U}}| = \sqrt{u_1^2 + u_2^2 + u_3^2}

Summary of Steps

  1. Calculate the magnitudes of both vectors Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}}.
  2. Compute the dot product of the vectors.
  3. Substitute the dot product and magnitudes into the cosine formula cos⁑θ=Uβ€Ύβ‹…Vβ€Ύβˆ£Uβ€Ύβˆ£βˆ£Vβ€Ύβˆ£\cos \theta = \frac{\underline{\mathbf{U}} \cdot \underline{\mathbf{V}}}{|\underline{\mathbf{U}}| |\underline{\mathbf{V}}|}.
  4. Simplify the expression to find cos⁑θ\cos \theta.