Question Statement
Find the cosine of the angle between the following pairs of vectors:
(i) Uβ=3iβ+jββkβ,Vβ=2iββ3jβ+kβ
(ii) Uβ=iββ3jβ+4kβ,Vβ=4iββjβ+3kβ
(iii) Uβ=[β3,5],Vβ=[6,β2]
(iv) Uβ=[2,β3,1],Vβ=[2,4,1]
Background and Explanation
To solve this problem, we need to use the formula for the cosine of the angle between two vectors Uβ and Vβ:
cosΞΈ=β£Uββ£β£Vββ£Uββ
Vββ
Where:
- Uββ
Vβ is the dot product of the two vectors.
- β£Uββ£ and β£Vββ£ are the magnitudes (lengths) of the vectors.
The dot product Uββ
Vβ for vectors Uβ=[u1β,u2β,u3β] and Vβ=[v1β,v2β,v3β] is computed as:
Uββ
Vβ=u1βv1β+u2βv2β+u3βv3β
The magnitude of a vector Uβ=[u1β,u2β,u3β] is:
β£Uββ£=u12β+u22β+u32ββ
Solution
(i) Uβ=3iβ+jββkβ,Vβ=2iββ3jβ+kβ
First, calculate the magnitudes of Uβ and Vβ:
β£Uββ£=(3)2+(1)2+(β1)2β=9+1+1β=11β
β£Vββ£=(2)2+(β3)2+(1)2β=4+9+1β=14β
Next, compute the dot product:
Uββ
Vβ=(3)(2)+(1)(β3)+(β1)(1)=6β3β1=2
Now, substitute these values into the cosine formula:
cosΞΈ=11βΓ14β2β=154β2β
(ii) Uβ=iββ3jβ+4kβ,Vβ=4iββjβ+3kβ
Calculate the magnitudes:
β£Uββ£=(1)2+(β3)2+(4)2β=1+9+16β=26β
β£Vββ£=(4)2+(β1)2+(3)2β=16+1+9β=26β
Now, compute the dot product:
Uββ
Vβ=(1)(4)+(β3)(β1)+(4)(3)=4+3+12=19
Substitute these values into the cosine formula:
cosΞΈ=26βΓ26β19β=2619β
(iii) Uβ=[β3,5],Vβ=[6,β2]
First, calculate the magnitudes:
β£Uββ£=(β3)2+(5)2β=9+25β=34β
β£Vββ£=(6)2+(β2)2β=36+4β=40β
Now, compute the dot product:
Uββ
Vβ=(β3)(6)+(5)(β2)=β18β10=β28
Substitute these values into the cosine formula:
cosΞΈ=34βΓ40ββ28β=1360ββ28β=2340ββ28β
(iv) Uβ=[2,β3,1],Vβ=[2,4,1]
First, calculate the magnitudes:
β£Uββ£=(2)2+(β3)2+(1)2β=4+9+1β=14β
β£Vββ£=(2)2+(4)2+(1)2β=4+16+1β=21β
Now, compute the dot product:
Uββ
Vβ=(2)(2)+(β3)(4)+(1)(1)=4β12+1=β7
Substitute these values into the cosine formula:
cosΞΈ=14βΓ21ββ7β=294ββ7β=76ββ7β=6ββ1β
- Cosine of angle between vectors:
cosΞΈ=β£Uββ£β£Vββ£Uββ
Vββ
Uββ
Vβ=u1βv1β+u2βv2β+u3βv3β
β£Uββ£=u12β+u22β+u32ββ
Summary of Steps
- Calculate the magnitudes of both vectors Uβ and Vβ.
- Compute the dot product of the vectors.
- Substitute the dot product and magnitudes into the cosine formula cosΞΈ=β£Uββ£β£Vββ£Uββ
Vββ.
- Simplify the expression to find cosΞΈ.