Question Statement
Calculate the projection of vector a ‾ \underline{\mathbf{a}} a along b ‾ \underline{\mathbf{b}} b and the projection of b ‾ \underline{\mathbf{b}} b along a ‾ \underline{\mathbf{a}} a for the following pairs of vectors:
(i) a ‾ = i ‾ − k ‾ , b ‾ = j ‾ + k ‾ \underline{\mathbf{a}} = \underline{\mathbf{i}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{j}} + \underline{\mathbf{k}} a = i − k , b = j + k
(ii) a ‾ = 3 i ‾ + j ‾ − k ‾ , b ‾ = − 2 i ‾ − j ‾ + k ‾ \underline{\mathbf{a}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = -2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}} a = 3 i + j − k , b = − 2 i − j + k
Background and Explanation
The projection of one vector onto another is a measure of how much one vector “points” in the direction of another. The formula for the projection of a ‾ \underline{\mathbf{a}} a along b ‾ \underline{\mathbf{b}} b is:
Projection of a ‾ onto b ‾ = a ‾ ⋅ b ‾ ∣ b ‾ ∣ \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} Projection of a onto b = ∣ b ∣ a ⋅ b
Similarly, the projection of b ‾ \underline{\mathbf{b}} b along a ‾ \underline{\mathbf{a}} a is:
Projection of b ‾ onto a ‾ = a ‾ ⋅ b ‾ ∣ a ‾ ∣ \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} Projection of b onto a = ∣ a ∣ a ⋅ b
Where:
a ‾ ⋅ b ‾ \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} a ⋅ b is the dot product of the two vectors.
∣ a ‾ ∣ |\underline{\mathbf{a}}| ∣ a ∣ and ∣ b ‾ ∣ |\underline{\mathbf{b}}| ∣ b ∣ are the magnitudes (lengths) of the vectors.
Solution
(i) a ‾ = i ‾ − k ‾ , b ‾ = j ‾ + k ‾ \underline{\mathbf{a}} = \underline{\mathbf{i}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{j}} + \underline{\mathbf{k}} a = i − k , b = j + k
Calculate the magnitudes of a ‾ \underline{\mathbf{a}} a and b ‾ \underline{\mathbf{b}} b :
∣ a ‾ ∣ = ( 1 ) 2 + ( − 1 ) 2 = 1 + 1 = 2 |\underline{\mathbf{a}}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} ∣ a ∣ = ( 1 ) 2 + ( − 1 ) 2 = 1 + 1 = 2
∣ b ‾ ∣ = ( 1 ) 2 + ( 1 ) 2 = 1 + 1 = 2 |\underline{\mathbf{b}}| = \sqrt{(1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} ∣ b ∣ = ( 1 ) 2 + ( 1 ) 2 = 1 + 1 = 2
Calculate the dot product of a ‾ \underline{\mathbf{a}} a and b ‾ \underline{\mathbf{b}} b :
a ‾ ⋅ b ‾ = ( 1 ) ( 0 ) + ( 0 ) ( 1 ) + ( − 1 ) ( 1 ) = 0 + 0 − 1 = − 1 \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (1)(0) + (0)(1) + (-1)(1) = 0 + 0 - 1 = -1 a ⋅ b = ( 1 ) ( 0 ) + ( 0 ) ( 1 ) + ( − 1 ) ( 1 ) = 0 + 0 − 1 = − 1
Find the projections :
Projection of a ‾ \underline{\mathbf{a}} a along b ‾ \underline{\mathbf{b}} b :
Projection of a ‾ onto b ‾ = a ‾ ⋅ b ‾ ∣ b ‾ ∣ = − 1 2 \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} = \frac{-1}{\sqrt{2}} Projection of a onto b = ∣ b ∣ a ⋅ b = 2 − 1
Projection of b ‾ \underline{\mathbf{b}} b along a ‾ \underline{\mathbf{a}} a :
Projection of b ‾ onto a ‾ = a ‾ ⋅ b ‾ ∣ a ‾ ∣ = − 1 2 \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} = \frac{-1}{\sqrt{2}} Projection of b onto a = ∣ a ∣ a ⋅ b = 2 − 1
(ii) a ‾ = 3 i ‾ + j ‾ − k ‾ , b ‾ = − 2 i ‾ − j ‾ + k ‾ \underline{\mathbf{a}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = -2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}} a = 3 i + j − k , b = − 2 i − j + k
Calculate the magnitudes of a ‾ \underline{\mathbf{a}} a and b ‾ \underline{\mathbf{b}} b :
∣ a ‾ ∣ = ( 3 ) 2 + ( 1 ) 2 + ( − 1 ) 2 = 9 + 1 + 1 = 11 |\underline{\mathbf{a}}| = \sqrt{(3)^2 + (1)^2 + (-1)^2} = \sqrt{9 + 1 + 1} = \sqrt{11} ∣ a ∣ = ( 3 ) 2 + ( 1 ) 2 + ( − 1 ) 2 = 9 + 1 + 1 = 11
∣ b ‾ ∣ = ( − 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 = 4 + 1 + 1 = 6 |\underline{\mathbf{b}}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} ∣ b ∣ = ( − 2 ) 2 + ( − 1 ) 2 + ( 1 ) 2 = 4 + 1 + 1 = 6
Calculate the dot product of a ‾ \underline{\mathbf{a}} a and b ‾ \underline{\mathbf{b}} b :
a ‾ ⋅ b ‾ = ( 3 ) ( − 2 ) + ( 1 ) ( − 1 ) + ( − 1 ) ( 1 ) = − 6 − 1 − 1 = − 8 \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (3)(-2) + (1)(-1) + (-1)(1) = -6 - 1 - 1 = -8 a ⋅ b = ( 3 ) ( − 2 ) + ( 1 ) ( − 1 ) + ( − 1 ) ( 1 ) = − 6 − 1 − 1 = − 8
Find the projections :
Projection of a ‾ \underline{\mathbf{a}} a along b ‾ \underline{\mathbf{b}} b :
Projection of a ‾ onto b ‾ = a ‾ ⋅ b ‾ ∣ b ‾ ∣ = − 8 6 \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} = \frac{-8}{\sqrt{6}} Projection of a onto b = ∣ b ∣ a ⋅ b = 6 − 8
Projection of b ‾ \underline{\mathbf{b}} b along a ‾ \underline{\mathbf{a}} a :
Projection of b ‾ onto a ‾ = a ‾ ⋅ b ‾ ∣ a ‾ ∣ = − 8 11 \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} = \frac{-8}{\sqrt{11}} Projection of b onto a = ∣ a ∣ a ⋅ b = 11 − 8
Projection of a vector onto another :
Projection of a ‾ onto b ‾ = a ‾ ⋅ b ‾ ∣ b ‾ ∣ \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} Projection of a onto b = ∣ b ∣ a ⋅ b
Projection of b ‾ onto a ‾ = a ‾ ⋅ b ‾ ∣ a ‾ ∣ \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} Projection of b onto a = ∣ a ∣ a ⋅ b
a ‾ ⋅ b ‾ = a 1 b 1 + a 2 b 2 + a 3 b 3 \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = a_1b_1 + a_2b_2 + a_3b_3 a ⋅ b = a 1 b 1 + a 2 b 2 + a 3 b 3
∣ a ‾ ∣ = a 1 2 + a 2 2 + a 3 2 |\underline{\mathbf{a}}| = \sqrt{a_1^2 + a_2^2 + a_3^2} ∣ a ∣ = a 1 2 + a 2 2 + a 3 2
Summary of Steps
Calculate the magnitudes of both vectors a ‾ \underline{\mathbf{a}} a and b ‾ \underline{\mathbf{b}} b .
Compute the dot product of the vectors.
Find the projection of a ‾ \underline{\mathbf{a}} a along b ‾ \underline{\mathbf{b}} b using the formula a ‾ ⋅ b ‾ ∣ b ‾ ∣ \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} ∣ b ∣ a ⋅ b .
Find the projection of b ‾ \underline{\mathbf{b}} b along a ‾ \underline{\mathbf{a}} a using the formula a ‾ ⋅ b ‾ ∣ a ‾ ∣ \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} ∣ a ∣ a ⋅ b .