Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-2

Question Statement

Calculate the projection of vector a\underline{\mathbf{a}} along b\underline{\mathbf{b}} and the projection of b\underline{\mathbf{b}} along a\underline{\mathbf{a}} for the following pairs of vectors:

(i) a=ik,b=j+k\underline{\mathbf{a}} = \underline{\mathbf{i}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{j}} + \underline{\mathbf{k}}

(ii) a=3i+jk,b=2ij+k\underline{\mathbf{a}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = -2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}


Background and Explanation

The projection of one vector onto another is a measure of how much one vector “points” in the direction of another. The formula for the projection of a\underline{\mathbf{a}} along b\underline{\mathbf{b}} is:

Projection of a onto b=abb\text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|}

Similarly, the projection of b\underline{\mathbf{b}} along a\underline{\mathbf{a}} is:

Projection of b onto a=aba\text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|}

Where:

  • ab\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} is the dot product of the two vectors.
  • a|\underline{\mathbf{a}}| and b|\underline{\mathbf{b}}| are the magnitudes (lengths) of the vectors.

Solution

(i) a=ik,b=j+k\underline{\mathbf{a}} = \underline{\mathbf{i}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{j}} + \underline{\mathbf{k}}

  1. Calculate the magnitudes of a\underline{\mathbf{a}} and b\underline{\mathbf{b}}:
a=(1)2+(1)2=1+1=2|\underline{\mathbf{a}}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} b=(1)2+(1)2=1+1=2|\underline{\mathbf{b}}| = \sqrt{(1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2}
  1. Calculate the dot product of a\underline{\mathbf{a}} and b\underline{\mathbf{b}}:
ab=(1)(0)+(0)(1)+(1)(1)=0+01=1\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (1)(0) + (0)(1) + (-1)(1) = 0 + 0 - 1 = -1
  1. Find the projections:
    • Projection of a\underline{\mathbf{a}} along b\underline{\mathbf{b}}:
Projection of a onto b=abb=12 \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} = \frac{-1}{\sqrt{2}}
  • Projection of b\underline{\mathbf{b}} along a\underline{\mathbf{a}}:
Projection of b onto a=aba=12 \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} = \frac{-1}{\sqrt{2}}

(ii) a=3i+jk,b=2ij+k\underline{\mathbf{a}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = -2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}

  1. Calculate the magnitudes of a\underline{\mathbf{a}} and b\underline{\mathbf{b}}:
a=(3)2+(1)2+(1)2=9+1+1=11|\underline{\mathbf{a}}| = \sqrt{(3)^2 + (1)^2 + (-1)^2} = \sqrt{9 + 1 + 1} = \sqrt{11} b=(2)2+(1)2+(1)2=4+1+1=6|\underline{\mathbf{b}}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6}
  1. Calculate the dot product of a\underline{\mathbf{a}} and b\underline{\mathbf{b}}:
ab=(3)(2)+(1)(1)+(1)(1)=611=8\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (3)(-2) + (1)(-1) + (-1)(1) = -6 - 1 - 1 = -8
  1. Find the projections:
    • Projection of a\underline{\mathbf{a}} along b\underline{\mathbf{b}}:
Projection of a onto b=abb=86 \text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} = \frac{-8}{\sqrt{6}}
  • Projection of b\underline{\mathbf{b}} along a\underline{\mathbf{a}}:
Projection of b onto a=aba=811 \text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|} = \frac{-8}{\sqrt{11}}

Key Formulas or Methods Used

  • Projection of a vector onto another:
Projection of a onto b=abb\text{Projection of } \underline{\mathbf{a}} \text{ onto } \underline{\mathbf{b}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|} Projection of b onto a=aba\text{Projection of } \underline{\mathbf{b}} \text{ onto } \underline{\mathbf{a}} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|}
  • Dot product:
ab=a1b1+a2b2+a3b3\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = a_1b_1 + a_2b_2 + a_3b_3
  • Magnitude of a vector:
a=a12+a22+a32|\underline{\mathbf{a}}| = \sqrt{a_1^2 + a_2^2 + a_3^2}

Summary of Steps

  1. Calculate the magnitudes of both vectors a\underline{\mathbf{a}} and b\underline{\mathbf{b}}.
  2. Compute the dot product of the vectors.
  3. Find the projection of a\underline{\mathbf{a}} along b\underline{\mathbf{b}} using the formula abb\frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{b}}|}.
  4. Find the projection of b\underline{\mathbf{b}} along a\underline{\mathbf{a}} using the formula aba\frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}|}.