Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-3

Question Statement

Find a real number α\alpha such that the vectors U‾\underline{\mathbf{U}} and V‾\underline{\mathbf{V}} are perpendicular.


Background and Explanation

Two vectors are perpendicular if and only if their dot product is zero. The dot product of two vectors U‾=[u1,u2,u3]\underline{\mathbf{U}} = [u_1, u_2, u_3] and V‾=[v1,v2,v3]\underline{\mathbf{V}} = [v_1, v_2, v_3] is given by:

U‾⋅V‾=u1v1+u2v2+u3v3\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = u_1v_1 + u_2v_2 + u_3v_3

For vectors to be perpendicular, we must have:

U‾⋅V‾=0\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = 0

Given that the vectors contain the variable α\alpha, we will solve for α\alpha such that the dot product equals zero.


Solution

(i) Given vectors:

U‾=2αi‾+j‾−k‾,V‾=i‾+αj‾+4k‾\underline{\mathbf{U}} = 2\alpha \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = \underline{\mathbf{i}} + \alpha \underline{\mathbf{j}} + 4\underline{\mathbf{k}}
  1. Dot product formula: Since the vectors are perpendicular, their dot product should be zero:
U‾⋅V‾=0\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = 0
  1. Compute the dot product:
(2α)(1)+(1)(α)+(−1)(4)=0(2\alpha)(1) + (1)(\alpha) + (-1)(4) = 0 2α+α−4=02\alpha + \alpha - 4 = 0 3α−4=03\alpha - 4 = 0
  1. Solve for α\alpha:
α=43\alpha = \frac{4}{3}

Thus, the value of α\alpha that makes U‾\underline{\mathbf{U}} and V‾\underline{\mathbf{V}} perpendicular is α=43\alpha = \frac{4}{3}.


(ii) Given vectors:

U‾=αi‾+2αj‾−k‾,V‾=i‾+αj‾+3k‾\underline{\mathbf{U}} = \alpha \underline{\mathbf{i}} + 2\alpha \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = \underline{\mathbf{i}} + \alpha \underline{\mathbf{j}} + 3\underline{\mathbf{k}}
  1. Dot product formula: Again, the vectors are perpendicular, so their dot product equals zero:
U‾⋅V‾=0\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = 0
  1. Compute the dot product:
(α)(1)+(2α)(α)+(−1)(3)=0(\alpha)(1) + (2\alpha)(\alpha) + (-1)(3) = 0 α+2α2−3=0\alpha + 2\alpha^2 - 3 = 0 2α2+α−3=02\alpha^2 + \alpha - 3 = 0
  1. Solve the quadratic equation 2α2+α−3=02\alpha^2 + \alpha - 3 = 0 using factoring:
α(2α+3)−1(2α+3)=0\alpha(2\alpha + 3) - 1(2\alpha + 3) = 0 (α−1)(2α+3)=0(\alpha - 1)(2\alpha + 3) = 0
  1. Find the roots:
α−1=0or2α+3=0\alpha - 1 = 0 \quad \text{or} \quad 2\alpha + 3 = 0 α=1orα=−32\alpha = 1 \quad \text{or} \quad \alpha = \frac{-3}{2}

Thus, the possible values of α\alpha are α=1\alpha = 1 and α=−32\alpha = \frac{-3}{2}.


Key Formulas or Methods Used

  • Dot product:
U‾⋅V‾=u1v1+u2v2+u3v3\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = u_1v_1 + u_2v_2 + u_3v_3
  • Condition for perpendicularity:
U‾⋅V‾=0\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = 0
  • Solving quadratic equations: The quadratic equation can be solved using factoring or the quadratic formula.

Summary of Steps

  1. Write down the dot product formula for the given vectors.
  2. Calculate the dot product and set it equal to zero.
  3. Solve for α\alpha by simplifying the equation.
  4. Find the possible values of α\alpha that satisfy the condition for perpendicularity.