Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-4

Question Statement

Find the number zz such that the triangle with vertices A(1,βˆ’1,0)A(1, -1, 0), B(βˆ’2,2,1)B(-2, 2, 1), and C(0,2,z)C(0, 2, z) forms a right triangle with the right angle at CC.


Background and Explanation

In a right triangle, the two vectors representing the sides that meet at the right angle are perpendicular to each other. For the triangle with vertices AA, BB, and CC, we need to find the value of zz such that the vectors AC→\overrightarrow{AC} and BC→\overrightarrow{BC} are perpendicular. The condition for two vectors to be perpendicular is that their dot product equals zero:

AC→⋅BC→=0\overrightarrow{AC} \cdot \overrightarrow{BC} = 0

We will calculate the vectors AC→\overrightarrow{AC} and BC→\overrightarrow{BC}, and then solve for zz.


Solution

  1. Find the vector AC→\overrightarrow{AC}:

The vector ACβ†’\overrightarrow{AC} is given by the difference between the coordinates of points C(0,2,z)C(0, 2, z) and A(1,βˆ’1,0)A(1, -1, 0):

ACβ†’=(0βˆ’1,2+1,zβˆ’0)=(βˆ’1,3,z)\overrightarrow{AC} = (0 - 1, 2 + 1, z - 0) = (-1, 3, z)

Thus, ACβ†’=βˆ’iβ€Ύ+3jβ€Ύ+zkβ€Ύ\overrightarrow{AC} = -\underline{\mathbf{i}} + 3 \underline{\mathbf{j}} + z \underline{\mathbf{k}}.

  1. Find the vector BC→\overrightarrow{BC}:

The vector BCβ†’\overrightarrow{BC} is given by the difference between the coordinates of points C(0,2,z)C(0, 2, z) and B(βˆ’2,2,1)B(-2, 2, 1):

BCβ†’=(0+2,2βˆ’2,zβˆ’1)=(2,0,zβˆ’1)\overrightarrow{BC} = (0 + 2, 2 - 2, z - 1) = (2, 0, z - 1)

Thus, BCβ†’=2iβ€Ύ+0jβ€Ύ+(zβˆ’1)kβ€Ύ\overrightarrow{BC} = 2 \underline{\mathbf{i}} + 0 \underline{\mathbf{j}} + (z - 1) \underline{\mathbf{k}}.

  1. Set up the condition for perpendicularity:

For AC→\overrightarrow{AC} and BC→\overrightarrow{BC} to be perpendicular, their dot product must be zero:

AC→⋅BC→=0\overrightarrow{AC} \cdot \overrightarrow{BC} = 0

Now, compute the dot product:

(βˆ’1)(2)+(3)(0)+z(zβˆ’1)=0(-1)(2) + (3)(0) + z(z - 1) = 0 βˆ’2+0+z2βˆ’z=0-2 + 0 + z^2 - z = 0 z2βˆ’zβˆ’2=0z^2 - z - 2 = 0
  1. Solve the quadratic equation:

The quadratic equation z2βˆ’zβˆ’2=0z^2 - z - 2 = 0 can be factored as:

z2βˆ’zβˆ’2=(zβˆ’2)(z+1)=0z^2 - z - 2 = (z - 2)(z + 1) = 0

Thus, the solutions are:

zβˆ’2=0orz+1=0z - 2 = 0 \quad \text{or} \quad z + 1 = 0 z=2orz=βˆ’1z = 2 \quad \text{or} \quad z = -1

Therefore, the possible values of zz are z=2z = 2 and z=βˆ’1z = -1.


Key Formulas or Methods Used

  • Dot product of vectors: The dot product of two vectors u=(u1,u2,u3)\mathbf{u} = (u_1, u_2, u_3) and v=(v1,v2,v3)\mathbf{v} = (v_1, v_2, v_3) is:
uβ‹…v=u1v1+u2v2+u3v3\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3
  • Condition for perpendicularity: Two vectors are perpendicular if their dot product is zero:
uβ‹…v=0\mathbf{u} \cdot \mathbf{v} = 0
  • Quadratic equation: The quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 can be solved by factoring, completing the square, or using the quadratic formula.

Summary of Steps

  1. Calculate the vectors AC→\overrightarrow{AC} and BC→\overrightarrow{BC}.
  2. Set up the dot product equation for perpendicularity: AC→⋅BC→=0\overrightarrow{AC} \cdot \overrightarrow{BC} = 0.
  3. Solve the resulting quadratic equation for zz.
  4. Find the solutions for zz, which are z=2z = 2 and z=βˆ’1z = -1.