Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-5

Question Statement

Given the conditions:

Vβ€Ύβ‹…iβ€Ύ=0,Vβ€Ύβ‹…jβ€Ύ=0,Vβ€Ύβ‹…kβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{i}} = 0, \quad \underline{\mathbf{V}} \cdot \underline{\mathbf{j}} = 0, \quad \underline{\mathbf{V}} \cdot \underline{\mathbf{k}} = 0

Find the vector Vβ€Ύ\underline{\mathbf{V}}, where Vβ€Ύ=aiβ€Ύ+bjβ€Ύ+ckβ€Ύ\underline{\mathbf{V}} = a \underline{\mathbf{i}} + b \underline{\mathbf{j}} + c \underline{\mathbf{k}}.


Background and Explanation

In this problem, we are given the conditions that the vector Vβ€Ύ\underline{\mathbf{V}} is orthogonal (perpendicular) to the unit vectors iβ€Ύ\underline{\mathbf{i}}, jβ€Ύ\underline{\mathbf{j}}, and kβ€Ύ\underline{\mathbf{k}}. The dot product between two perpendicular vectors is zero.

  • The dot product formula for two vectors U=(u1,u2,u3)\mathbf{U} = (u_1, u_2, u_3) and V=(v1,v2,v3)\mathbf{V} = (v_1, v_2, v_3) is:
Uβ‹…V=u1v1+u2v2+u3v3\mathbf{U} \cdot \mathbf{V} = u_1 v_1 + u_2 v_2 + u_3 v_3
  • The conditions Vβ€Ύβ‹…iβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{i}} = 0, Vβ€Ύβ‹…jβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{j}} = 0, and Vβ€Ύβ‹…kβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{k}} = 0 imply that the vector Vβ€Ύ\underline{\mathbf{V}} must be the null vector, as it has no component in the directions of iβ€Ύ\underline{\mathbf{i}}, jβ€Ύ\underline{\mathbf{j}}, or kβ€Ύ\underline{\mathbf{k}}.

Solution

We are given the vector Vβ€Ύ=aiβ€Ύ+bjβ€Ύ+ckβ€Ύ\underline{\mathbf{V}} = a \underline{\mathbf{i}} + b \underline{\mathbf{j}} + c \underline{\mathbf{k}}, and we need to solve for aa, bb, and cc under the conditions that:

  1. Dot product of Vβ€Ύ\underline{\mathbf{V}} and iβ€Ύ\underline{\mathbf{i}}:
Vβ€Ύβ‹…iβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{i}} = 0

Substitute the components of Vβ€Ύ\underline{\mathbf{V}} and iβ€Ύ\underline{\mathbf{i}}:

(aiβ€Ύ+bjβ€Ύ+ckβ€Ύ)β‹…(iβ€Ύ+0jβ€Ύ+0kβ€Ύ)=0(a \underline{\mathbf{i}} + b \underline{\mathbf{j}} + c \underline{\mathbf{k}}) \cdot (\underline{\mathbf{i}} + 0 \underline{\mathbf{j}} + 0 \underline{\mathbf{k}}) = 0

Simplifying:

a(1)+b(0)+c(0)=0a(1) + b(0) + c(0) = 0 a=0a = 0
  1. Dot product of Vβ€Ύ\underline{\mathbf{V}} and jβ€Ύ\underline{\mathbf{j}}:
Vβ€Ύβ‹…jβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{j}} = 0

Substitute the components of Vβ€Ύ\underline{\mathbf{V}} and jβ€Ύ\underline{\mathbf{j}}:

a(0)+b(1)+c(0)=0a(0) + b(1) + c(0) = 0 b=0b = 0
  1. Dot product of Vβ€Ύ\underline{\mathbf{V}} and kβ€Ύ\underline{\mathbf{k}}:
Vβ€Ύβ‹…kβ€Ύ=0\underline{\mathbf{V}} \cdot \underline{\mathbf{k}} = 0

Substitute the components of Vβ€Ύ\underline{\mathbf{V}} and kβ€Ύ\underline{\mathbf{k}}:

a(0)+b(0)+c(1)=0a(0) + b(0) + c(1) = 0 c=0c = 0
  1. Final result:

From the above calculations, we find that a=0a = 0, b=0b = 0, and c=0c = 0. Thus, the vector Vβ€Ύ\underline{\mathbf{V}} is:

Vβ€Ύ=0iβ€Ύ+0jβ€Ύ+0kβ€Ύ=0\underline{\mathbf{V}} = 0 \underline{\mathbf{i}} + 0 \underline{\mathbf{j}} + 0 \underline{\mathbf{k}} = \mathbf{0}

Therefore, Vβ€Ύ\underline{\mathbf{V}} is the null vector.


Key Formulas or Methods Used

  • Dot product of two vectors U=(u1,u2,u3)\mathbf{U} = (u_1, u_2, u_3) and V=(v1,v2,v3)\mathbf{V} = (v_1, v_2, v_3):
Uβ‹…V=u1v1+u2v2+u3v3\mathbf{U} \cdot \mathbf{V} = u_1 v_1 + u_2 v_2 + u_3 v_3
  • Condition for perpendicular vectors: Two vectors are perpendicular if their dot product is zero:
Uβ‹…V=0\mathbf{U} \cdot \mathbf{V} = 0

Summary of Steps

  1. Write down the given vector Vβ€Ύ=aiβ€Ύ+bjβ€Ύ+ckβ€Ύ\underline{\mathbf{V}} = a \underline{\mathbf{i}} + b \underline{\mathbf{j}} + c \underline{\mathbf{k}}.
  2. Set up the dot product equations for each of the unit vectors iβ€Ύ\underline{\mathbf{i}}, jβ€Ύ\underline{\mathbf{j}}, and kβ€Ύ\underline{\mathbf{k}}.
  3. Solve each equation to find aa, bb, and cc.
  4. Substitute the values a=0a = 0, b=0b = 0, and c=0c = 0 into the vector Vβ€Ύ\underline{\mathbf{V}}.
  5. Conclude that Vβ€Ύ\underline{\mathbf{V}} is the null vector 0\mathbf{0}.