Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-6

Question Statement

i. Show that the vectors (3i‾−2j‾+k‾),(i‾−3j‾+5k‾)(3 \underline{i} - 2 \underline{j} + \underline{k}), (\underline{i} - 3 \underline{j} + 5 \underline{k}) and (2i‾+j‾−4k‾)(2 \underline{i} + \underline{j} - 4 \underline{k}) form a right angle.

ii. Show that the set of points P=(1,3,2)P = (1, 3, 2), Q=(4,1,4)Q = (4, 1, 4), and R=(6,5,5)R = (6, 5, 5) form a right triangle.


Background and Explanation

In part (i), we are tasked with showing that the given vectors are perpendicular (form a right angle). Two vectors are perpendicular if their dot product is zero:

uâ‹…v=0\mathbf{u} \cdot \mathbf{v} = 0

In part (ii), we are given three points in space, and we need to prove that they form a right triangle. For three points to form a right triangle, the vectors corresponding to the sides meeting at the right angle must be perpendicular to each other.


Solution

(i) Proving that the vectors form a right angle:

We are given the following vectors:

  • a‾=3i‾−2j‾+k‾\underline{\mathbf{a}} = 3 \underline{i} - 2 \underline{j} + \underline{k}
  • b‾=i‾−3j‾+5k‾\underline{\mathbf{b}} = \underline{i} - 3 \underline{j} + 5 \underline{k}
  • c‾=2i‾+j‾−4k‾\underline{\mathbf{c}} = 2 \underline{i} + \underline{j} - 4 \underline{k}

We need to show that these vectors form a right angle, which means we need to prove that at least two of the vectors are perpendicular. To do this, we will compute the dot product between a‾\underline{\mathbf{a}} and c‾\underline{\mathbf{c}}.

  1. Dot product of a‾\underline{\mathbf{a}} and c‾\underline{\mathbf{c}}:
a‾⋅c‾=(3i‾−2j‾+k‾)⋅(2i‾+j‾−4k‾)\underline{\mathbf{a}} \cdot \underline{\mathbf{c}} = (3 \underline{i} - 2 \underline{j} + \underline{k}) \cdot (2 \underline{i} + \underline{j} - 4 \underline{k}) =3(2)+(−2)(1)+1(−4)=6−2−4=0= 3(2) + (-2)(1) + 1(-4) = 6 - 2 - 4 = 0

Since the dot product is 00, the vectors a‾\underline{\mathbf{a}} and c‾\underline{\mathbf{c}} are perpendicular, and thus form a right angle.

a‾⊥c‾\underline{\mathbf{a}} \perp \underline{\mathbf{c}}

(ii) Proving that the points PP, QQ, and RR form a right triangle:

We are given the points:

  • P=(1,3,2)P = (1, 3, 2)
  • Q=(4,1,4)Q = (4, 1, 4)
  • R=(6,5,5)R = (6, 5, 5)

We need to show that these points form a right triangle. To do this, we will compute the vectors corresponding to the sides of the triangle and check if any two vectors are perpendicular.

  1. Find the vectors:

    • PQ→=Q−P=(4,1,4)−(1,3,2)=3i‾−2j‾+2k‾\overrightarrow{PQ} = Q - P = (4, 1, 4) - (1, 3, 2) = 3 \underline{i} - 2 \underline{j} + 2 \underline{k}
    • QR→=R−Q=(6,5,5)−(4,1,4)=2i‾+4j‾+k‾\overrightarrow{QR} = R - Q = (6, 5, 5) - (4, 1, 4) = 2 \underline{i} + 4 \underline{j} + \underline{k}
    • PR→=R−P=(6,5,5)−(1,3,2)=5i‾+2j‾+3k‾\overrightarrow{PR} = R - P = (6, 5, 5) - (1, 3, 2) = 5 \underline{i} + 2 \underline{j} + 3 \underline{k}
  2. Check if PQ→\overrightarrow{PQ} and QR→\overrightarrow{QR} are perpendicular:

PQ→⋅QR→=(3i‾−2j‾+2k‾)⋅(2i‾+4j‾+k‾)\overrightarrow{PQ} \cdot \overrightarrow{QR} = (3 \underline{i} - 2 \underline{j} + 2 \underline{k}) \cdot (2 \underline{i} + 4 \underline{j} + \underline{k}) =3(2)+(−2)(4)+2(1)=6−8+2=0= 3(2) + (-2)(4) + 2(1) = 6 - 8 + 2 = 0

Since the dot product is 00, the vectors PQ→\overrightarrow{PQ} and QR→\overrightarrow{QR} are perpendicular, and thus the points PP, QQ, and RR form a right triangle.

P,Q,R are the vertices of a right triangle.P, Q, R \text{ are the vertices of a right triangle.}

Key Formulas or Methods Used

  • Dot product of vectors:
uâ‹…v=u1v1+u2v2+u3v3\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3

Two vectors are perpendicular if their dot product is zero:

uâ‹…v=0\mathbf{u} \cdot \mathbf{v} = 0
  • Vectors between points: The vector between two points P(x1,y1,z1)P(x_1, y_1, z_1) and Q(x2,y2,z2)Q(x_2, y_2, z_2) is given by:
PQ→=(x2−x1)i‾+(y2−y1)j‾+(z2−z1)k‾\overrightarrow{PQ} = (x_2 - x_1) \underline{i} + (y_2 - y_1) \underline{j} + (z_2 - z_1) \underline{k}

Summary of Steps

  1. For part (i), compute the dot product of a‾\underline{\mathbf{a}} and c‾\underline{\mathbf{c}} to check if they are perpendicular.
  2. For part (ii), find the vectors corresponding to the sides of the triangle PQRPQR.
  3. Compute the dot product of vectors PQ→\overrightarrow{PQ} and QR→\overrightarrow{QR}.
  4. Conclude that the vectors are perpendicular, so the points PP, QQ, and RR form a right triangle.