Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.3 Q-7

Question Statement

Show that the midpoint of the hypotenuse of a right-angled triangle is equidistant from its vertices.


Background and Explanation

In a right-angled triangle, the midpoint of the hypotenuse is a unique point, and it has an interesting property: it is equidistant from the two vertices of the triangle that form the hypotenuse. This property is a result of the perpendicular bisector theorem. We will show this property by calculating the distances from the midpoint to each of the two vertices and proving they are equal.

To solve this, we will use the distance formula and basic vector operations.


Solution

Consider a right-angled triangle OABOAB with a right angle at OO. Let ABAB be the hypotenuse, and MM be the midpoint of the hypotenuse. We need to show that:

  • AMβƒ—=MBβƒ—A \vec{M} = M \vec{B}, meaning that the distances from MM to AA and MM to BB are equal.
  • OMβƒ—O \vec{M} is perpendicular to the hypotenuse.

Step 1: Find the vector AM⃗A \vec{M}

Let the coordinates of AA be (a,0)(a, 0) and the coordinates of BB be (0,b)(0, b). The coordinates of the midpoint MM are given by:

M=(a2,b2)M = \left(\frac{a}{2}, \frac{b}{2}\right)

Now, find the vector AM⃗A \vec{M}, which is the difference between the coordinates of MM and AA:

AMβƒ—=(a2,b2)βˆ’(a,0)A \vec{M} = \left(\frac{a}{2}, \frac{b}{2}\right) - (a, 0) AMβƒ—=(a2βˆ’a,b2βˆ’0)A \vec{M} = \left(\frac{a}{2} - a, \frac{b}{2} - 0\right) AMβƒ—=(βˆ’a2,b2)A \vec{M} = \left(-\frac{a}{2}, \frac{b}{2}\right)

The magnitude of AM⃗A \vec{M} is:

∣AMβƒ—βˆ£=(a2)2+(b2)2=a24+b24=a2+b24(1)|A \vec{M}| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2} = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}} = \sqrt{\frac{a^2 + b^2}{4}} \tag{1}

Step 2: Find the vector BM⃗B \vec{M}

Now, find the vector BM⃗B \vec{M}, which is the difference between the coordinates of MM and BB:

BMβƒ—=(a2,b2)βˆ’(0,b)B \vec{M} = \left(\frac{a}{2}, \frac{b}{2}\right) - (0, b) BMβƒ—=(a2βˆ’0,b2βˆ’b)B \vec{M} = \left(\frac{a}{2} - 0, \frac{b}{2} - b\right) BMβƒ—=(a2,b2βˆ’b)=(a2,βˆ’b2)B \vec{M} = \left(\frac{a}{2}, \frac{b}{2} - b\right) = \left(\frac{a}{2}, \frac{-b}{2}\right)

The magnitude of BM⃗B \vec{M} is:

∣BMβƒ—βˆ£=(a2)2+(βˆ’b2)2=a24+b24=a2+b24(2)|B \vec{M}| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{-b}{2}\right)^2} = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}} = \sqrt{\frac{a^2 + b^2}{4}} \tag{2}

Step 3: Find the vector OM⃗O \vec{M}

Finally, find the vector OM⃗O \vec{M}, which is the difference between the coordinates of MM and OO:

OMβƒ—=(a2,b2)βˆ’(0,0)O \vec{M} = \left(\frac{a}{2}, \frac{b}{2}\right) - (0, 0) OMβƒ—=(a2,b2)O \vec{M} = \left(\frac{a}{2}, \frac{b}{2}\right)

The magnitude of OM⃗O \vec{M} is:

∣OMβƒ—βˆ£=(a2)2+(b2)2=a24+b24=a2+b24(3)|O \vec{M}| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2} = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}} = \sqrt{\frac{a^2 + b^2}{4}} \tag{3}

Step 4: Conclusion

From equations (1)(1), (2)(2), and (3)(3), we see that:

∣AMβƒ—βˆ£=∣BMβƒ—βˆ£=∣OMβƒ—βˆ£|A \vec{M}| = |B \vec{M}| = |O \vec{M}|

Therefore, the midpoint MM of the hypotenuse is equidistant from the vertices AA, BB, and OO. This proves that the midpoint of the hypotenuse of a right-angled triangle is equidistant from its vertices.


Key Formulas or Methods Used

  • Distance between two points: The distance between two points P(x1,y1)P(x_1, y_1) and Q(x2,y2)Q(x_2, y_2) in the plane is given by:
Distance=(x2βˆ’x1)2+(y2βˆ’y1)2\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
  • Magnitude of a vector: The magnitude of a vector v=(v1,v2)\mathbf{v} = (v_1, v_2) is:
∣v∣=v12+v22|\mathbf{v}| = \sqrt{v_1^2 + v_2^2}
  • Midpoint formula: The midpoint MM of the segment joining points A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2) is:
M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)

Summary of Steps

  1. Define the vectors AM⃗A \vec{M}, BM⃗B \vec{M}, and OM⃗O \vec{M} based on the coordinates of points AA, BB, and OO.
  2. Calculate the magnitudes of the vectors AM⃗A \vec{M}, BM⃗B \vec{M}, and OM⃗O \vec{M}.
  3. Compare the magnitudes to show that AM⃗=BM⃗=OM⃗A \vec{M} = B \vec{M} = O \vec{M}.
  4. Conclude that the midpoint of the hypotenuse is equidistant from the vertices of the right-angled triangle.