Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.4 Q-1

Question Statement

Compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} and bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a}, and check your answer by showing that both aβ€Ύ\underline{a} and bβ€Ύ\underline{b} are perpendicular to aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} and bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a}.

Given:

  • aβ€Ύ=2iβ€Ύ+jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{a}} = 2 \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}
  • bβ€Ύ=iβ€Ύβˆ’jβ€Ύ+kβ€Ύ\underline{\mathbf{b}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}

Background and Explanation

In vector algebra, the cross product of two vectors a\mathbf{a} and b\mathbf{b} results in a vector that is perpendicular to both a\mathbf{a} and b\mathbf{b}. To compute the cross product aΓ—b\mathbf{a} \times \mathbf{b}, we use the determinant of a matrix formed by the unit vectors i,j,k\mathbf{i}, \mathbf{j}, \mathbf{k} and the components of a\mathbf{a} and b\mathbf{b}:

aΓ—b=∣ijka1a2a3b1b2b3∣\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} a_1 & a_2 & a_3 b_1 & b_2 & b_3 \end{vmatrix}

Additionally, to verify if two vectors are perpendicular, we check if their dot product is zero. If the dot product of two vectors u\mathbf{u} and v\mathbf{v} is zero, i.e. uβ‹…v=0\mathbf{u} \cdot \mathbf{v} = 0, then the vectors are perpendicular.


Solution

Part (i): Compute aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}

We are given the vectors:

aβ€Ύ=2iβ€Ύ+jβ€Ύβˆ’kβ€Ύ,bβ€Ύ=iβ€Ύβˆ’jβ€Ύ+kβ€Ύ\underline{\mathbf{a}} = 2 \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}

We compute the cross product using the determinant formula:

aβ€ΎΓ—bβ€Ύ=∣ijk21βˆ’11βˆ’11∣\underline{a} \times \underline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} 2 & 1 & -1 1 & -1 & 1 \end{vmatrix}

Expanding the determinant:

aβ€ΎΓ—bβ€Ύ=i(1βˆ’(βˆ’1))βˆ’j(2+1)+k(βˆ’2βˆ’1)\underline{a} \times \underline{b} = \mathbf{i}(1 - (-1)) - \mathbf{j}(2 + 1) + \mathbf{k}(-2 - 1) aβ€ΎΓ—bβ€Ύ=2iβˆ’3jβˆ’3k\underline{a} \times \underline{b} = 2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}

So, the cross product is:

aβ€ΎΓ—bβ€Ύ=2iβˆ’3jβˆ’3k\underline{a} \times \underline{b} = 2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}

Part (ii): Verify Perpendicularity of aβ€Ύ\underline{a} and bβ€Ύ\underline{b} with aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}

First, check if aβ€Ύ\underline{a} is perpendicular to aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} by computing the dot product:

aβ€Ύβ‹…(aβ€ΎΓ—bβ€Ύ)=(2i+jβˆ’k)β‹…(2iβˆ’3jβˆ’3k)\underline{a} \cdot (\underline{a} \times \underline{b}) = (2\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}) =2(2)+1(βˆ’3)+(βˆ’1)(βˆ’3)=4βˆ’3+3=0= 2(2) + 1(-3) + (-1)(-3) = 4 - 3 + 3 = 0

Since the dot product is zero, aβ€ΎβŠ₯aβ€ΎΓ—bβ€Ύ\underline{a} \perp \underline{a} \times \underline{b}.

Next, check if bβ€Ύ\underline{b} is perpendicular to aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}:

bβ€Ύβ‹…(aβ€ΎΓ—bβ€Ύ)=(iβˆ’j+k)β‹…(2iβˆ’3jβˆ’3k)\underline{b} \cdot (\underline{a} \times \underline{b}) = (\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}) =1(2)+(βˆ’1)(βˆ’3)+1(βˆ’3)=2+3βˆ’3=0= 1(2) + (-1)(-3) + 1(-3) = 2 + 3 - 3 = 0

Since the dot product is zero, bβ€ΎβŠ₯aβ€ΎΓ—bβ€Ύ\underline{b} \perp \underline{a} \times \underline{b}.

Part (iii): Compute bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a}

Next, we compute the cross product bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a}:

bβ€ΎΓ—aβ€Ύ=∣ijk1βˆ’1121βˆ’1∣\underline{b} \times \underline{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} 1 & -1 & 1 2 & 1 & -1 \end{vmatrix}

Expanding the determinant:

bβ€ΎΓ—aβ€Ύ=i(1βˆ’(βˆ’1))βˆ’j(βˆ’1βˆ’2)+k(1+2)\underline{b} \times \underline{a} = \mathbf{i}(1 - (-1)) - \mathbf{j}(-1 - 2) + \mathbf{k}(1 + 2) bβ€ΎΓ—aβ€Ύ=0i+3j+3k\underline{b} \times \underline{a} = 0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}

So:

bβ€ΎΓ—aβ€Ύ=3j+3k\underline{b} \times \underline{a} = 3\mathbf{j} + 3\mathbf{k}

Part (iv): Verify Perpendicularity of bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a}

Check if bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a} is perpendicular to aβ€Ύ\underline{a}:

(bβ€ΎΓ—aβ€Ύ)β‹…aβ€Ύ=(0i+3j+3k)β‹…(2i+jβˆ’k)(\underline{b} \times \underline{a}) \cdot \underline{a} = (0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - \mathbf{k}) =0(2)+3(1)+3(βˆ’1)=0+3βˆ’3=0= 0(2) + 3(1) + 3(-1) = 0 + 3 - 3 = 0

Since the dot product is zero, bβ€ΎΓ—aβ€ΎβŠ₯aβ€Ύ\underline{b} \times \underline{a} \perp \underline{a}.

Check if bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a} is perpendicular to bβ€Ύ\underline{b}:

(bβ€ΎΓ—aβ€Ύ)β‹…bβ€Ύ=(0i+3j+3k)β‹…(iβˆ’j+k)(\underline{b} \times \underline{a}) \cdot \underline{b} = (0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (\mathbf{i} - \mathbf{j} + \mathbf{k}) =0(1)+3(βˆ’1)+3(1)=0βˆ’3+3=0= 0(1) + 3(-1) + 3(1) = 0 - 3 + 3 = 0

Since the dot product is zero, bβ€ΎΓ—aβ€ΎβŠ₯bβ€Ύ\underline{b} \times \underline{a} \perp \underline{b}.


Key Formulas or Methods Used

  1. Cross Product:
aΓ—b=∣ijka1a2a3b1b2b3∣ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} a_1 & a_2 & a_3 b_1 & b_2 & b_3 \end{vmatrix}
  1. Perpendicular Check (Dot Product): Two vectors a\mathbf{a} and b\mathbf{b} are perpendicular if:
aβ‹…b=0 \mathbf{a} \cdot \mathbf{b} = 0

Summary of Steps

  1. Compute aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} using the determinant formula.
  2. Verify if aβ€Ύ\underline{a} is perpendicular to aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} by checking the dot product.
  3. Verify if bβ€Ύ\underline{b} is perpendicular to aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} by checking the dot product.
  4. Compute bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a} using the determinant formula.
  5. Verify if bβ€ΎΓ—aβ€Ύ\underline{b} \times \underline{a} is perpendicular to aβ€Ύ\underline{a} and bβ€Ύ\underline{b} by checking the dot product.