Question Statement
Compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β and b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β , and check your answer by showing that both a βΎ \underline{a} a β and b βΎ \underline{b} b β are perpendicular to a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β and b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β .
Given:
a βΎ = 2 i βΎ + j βΎ β k βΎ \underline{\mathbf{a}} = 2 \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}} a β = 2 i β + j β β k β
b βΎ = i βΎ β j βΎ + k βΎ \underline{\mathbf{b}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}} b β = i β β j β + k β
Background and Explanation
In vector algebra, the cross product of two vectors a \mathbf{a} a and b \mathbf{b} b results in a vector that is perpendicular to both a \mathbf{a} a and b \mathbf{b} b . To compute the cross product a Γ b \mathbf{a} \times \mathbf{b} a Γ b , we use the determinant of a matrix formed by the unit vectors i , j , k \mathbf{i}, \mathbf{j}, \mathbf{k} i , j , k and the components of a \mathbf{a} a and b \mathbf{b} b :
a Γ b = β£ i j k a 1 a 2 a 3 b 1 b 2 b 3 β£ \mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
a_1 & a_2 & a_3
b_1 & b_2 & b_3
\end{vmatrix} a Γ b = β i β j β k a 1 β β a 2 β β a 3 β b 1 β β b 2 β β b 3 β β β
Additionally, to verify if two vectors are perpendicular, we check if their dot product is zero. If the dot product of two vectors u \mathbf{u} u and v \mathbf{v} v is zero, i.e. u β
v = 0 \mathbf{u} \cdot \mathbf{v} = 0 u β
v = 0 , then the vectors are perpendicular.
Solution
Part (i): Compute a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β
We are given the vectors:
a βΎ = 2 i βΎ + j βΎ β k βΎ , b βΎ = i βΎ β j βΎ + k βΎ \underline{\mathbf{a}} = 2 \underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}} a β = 2 i β + j β β k β , b β = i β β j β + k β
We compute the cross product using the determinant formula:
a βΎ Γ b βΎ = β£ i j k 2 1 β 11 β 1 1 β£ \underline{a} \times \underline{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
2 & 1 & -1
1 & -1 & 1
\end{vmatrix} a β Γ b β = β i β j β k 2 β 1 β β 11 β β 1 β 1 β β
Expanding the determinant:
a βΎ Γ b βΎ = i ( 1 β ( β 1 ) ) β j ( 2 + 1 ) + k ( β 2 β 1 ) \underline{a} \times \underline{b} = \mathbf{i}(1 - (-1)) - \mathbf{j}(2 + 1) + \mathbf{k}(-2 - 1) a β Γ b β = i ( 1 β ( β 1 )) β j ( 2 + 1 ) + k ( β 2 β 1 )
a βΎ Γ b βΎ = 2 i β 3 j β 3 k \underline{a} \times \underline{b} = 2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k} a β Γ b β = 2 i β 3 j β 3 k
So, the cross product is:
a βΎ Γ b βΎ = 2 i β 3 j β 3 k \underline{a} \times \underline{b} = 2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k} a β Γ b β = 2 i β 3 j β 3 k
Part (ii): Verify Perpendicularity of a βΎ \underline{a} a β and b βΎ \underline{b} b β with a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β
First, check if a βΎ \underline{a} a β is perpendicular to a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β by computing the dot product:
a βΎ β
( a βΎ Γ b βΎ ) = ( 2 i + j β k ) β
( 2 i β 3 j β 3 k ) \underline{a} \cdot (\underline{a} \times \underline{b}) = (2\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}) a β β
( a β Γ b β ) = ( 2 i + j β k ) β
( 2 i β 3 j β 3 k )
= 2 ( 2 ) + 1 ( β 3 ) + ( β 1 ) ( β 3 ) = 4 β 3 + 3 = 0 = 2(2) + 1(-3) + (-1)(-3) = 4 - 3 + 3 = 0 = 2 ( 2 ) + 1 ( β 3 ) + ( β 1 ) ( β 3 ) = 4 β 3 + 3 = 0
Since the dot product is zero, a βΎ β₯ a βΎ Γ b βΎ \underline{a} \perp \underline{a} \times \underline{b} a β β₯ a β Γ b β .
Next, check if b βΎ \underline{b} b β is perpendicular to a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β :
b βΎ β
( a βΎ Γ b βΎ ) = ( i β j + k ) β
( 2 i β 3 j β 3 k ) \underline{b} \cdot (\underline{a} \times \underline{b}) = (\mathbf{i} - \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} - 3\mathbf{k}) b β β
( a β Γ b β ) = ( i β j + k ) β
( 2 i β 3 j β 3 k )
= 1 ( 2 ) + ( β 1 ) ( β 3 ) + 1 ( β 3 ) = 2 + 3 β 3 = 0 = 1(2) + (-1)(-3) + 1(-3) = 2 + 3 - 3 = 0 = 1 ( 2 ) + ( β 1 ) ( β 3 ) + 1 ( β 3 ) = 2 + 3 β 3 = 0
Since the dot product is zero, b βΎ β₯ a βΎ Γ b βΎ \underline{b} \perp \underline{a} \times \underline{b} b β β₯ a β Γ b β .
Part (iii): Compute b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β
Next, we compute the cross product b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β :
b βΎ Γ a βΎ = β£ i j k 1 β 1 12 1 β 1 β£ \underline{b} \times \underline{a} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
1 & -1 & 1
2 & 1 & -1
\end{vmatrix} b β Γ a β = β i β j β k 1 β β 1 β 12 β 1 β β 1 β β
Expanding the determinant:
b βΎ Γ a βΎ = i ( 1 β ( β 1 ) ) β j ( β 1 β 2 ) + k ( 1 + 2 ) \underline{b} \times \underline{a} = \mathbf{i}(1 - (-1)) - \mathbf{j}(-1 - 2) + \mathbf{k}(1 + 2) b β Γ a β = i ( 1 β ( β 1 )) β j ( β 1 β 2 ) + k ( 1 + 2 )
b βΎ Γ a βΎ = 0 i + 3 j + 3 k \underline{b} \times \underline{a} = 0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} b β Γ a β = 0 i + 3 j + 3 k
So:
b βΎ Γ a βΎ = 3 j + 3 k \underline{b} \times \underline{a} = 3\mathbf{j} + 3\mathbf{k} b β Γ a β = 3 j + 3 k
Part (iv): Verify Perpendicularity of b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β
Check if b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β is perpendicular to a βΎ \underline{a} a β :
( b βΎ Γ a βΎ ) β
a βΎ = ( 0 i + 3 j + 3 k ) β
( 2 i + j β k ) (\underline{b} \times \underline{a}) \cdot \underline{a} = (0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - \mathbf{k}) ( b β Γ a β ) β
a β = ( 0 i + 3 j + 3 k ) β
( 2 i + j β k )
= 0 ( 2 ) + 3 ( 1 ) + 3 ( β 1 ) = 0 + 3 β 3 = 0 = 0(2) + 3(1) + 3(-1) = 0 + 3 - 3 = 0 = 0 ( 2 ) + 3 ( 1 ) + 3 ( β 1 ) = 0 + 3 β 3 = 0
Since the dot product is zero, b βΎ Γ a βΎ β₯ a βΎ \underline{b} \times \underline{a} \perp \underline{a} b β Γ a β β₯ a β .
Check if b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β is perpendicular to b βΎ \underline{b} b β :
( b βΎ Γ a βΎ ) β
b βΎ = ( 0 i + 3 j + 3 k ) β
( i β j + k ) (\underline{b} \times \underline{a}) \cdot \underline{b} = (0\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) \cdot (\mathbf{i} - \mathbf{j} + \mathbf{k}) ( b β Γ a β ) β
b β = ( 0 i + 3 j + 3 k ) β
( i β j + k )
= 0 ( 1 ) + 3 ( β 1 ) + 3 ( 1 ) = 0 β 3 + 3 = 0 = 0(1) + 3(-1) + 3(1) = 0 - 3 + 3 = 0 = 0 ( 1 ) + 3 ( β 1 ) + 3 ( 1 ) = 0 β 3 + 3 = 0
Since the dot product is zero, b βΎ Γ a βΎ β₯ b βΎ \underline{b} \times \underline{a} \perp \underline{b} b β Γ a β β₯ b β .
Cross Product :
a Γ b = β£ i j k a 1 a 2 a 3 b 1 b 2 b 3 β£ \mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
a_1 & a_2 & a_3
b_1 & b_2 & b_3
\end{vmatrix} a Γ b = β i β j β k a 1 β β a 2 β β a 3 β b 1 β β b 2 β β b 3 β β β
Perpendicular Check (Dot Product) :
Two vectors a \mathbf{a} a and b \mathbf{b} b are perpendicular if:
a β
b = 0 \mathbf{a} \cdot \mathbf{b} = 0 a β
b = 0
Summary of Steps
Compute a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β using the determinant formula.
Verify if a βΎ \underline{a} a β is perpendicular to a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β by checking the dot product.
Verify if b βΎ \underline{b} b β is perpendicular to a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β by checking the dot product.
Compute b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β using the determinant formula.
Verify if b βΎ Γ a βΎ \underline{b} \times \underline{a} b β Γ a β is perpendicular to a βΎ \underline{a} a β and b βΎ \underline{b} b β by checking the dot product.