Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.4 Q-2

Question Statement

Find a unit vector perpendicular to the plane containing aβ€Ύ\underline{a} and bβ€Ύ\underline{b}. Also, find the sine of the angle between them.

Given vectors:

(i) aβ€Ύ=2iβ€Ύβˆ’6jβ€Ύβˆ’3kβ€Ύ\underline{\mathbf{a}} = 2 \underline{\mathbf{i}} - 6 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}},
bβ€Ύ=4iβ€Ύ+3jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{b}} = 4 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - \underline{\mathbf{k}}


Background and Explanation

In vector algebra, the cross product of two vectors a\mathbf{a} and b\mathbf{b} results in a vector that is perpendicular to the plane containing a\mathbf{a} and b\mathbf{b}. To find a unit vector perpendicular to the plane, we normalize the cross product vector by dividing it by its magnitude.

To find the sine of the angle ΞΈ\theta between two vectors, we can use the formula:

sin⁑θ=∣aΓ—b∣∣aβˆ£β‹…βˆ£b∣\sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| \cdot |\mathbf{b}|}

Where:

  • aΓ—b\mathbf{a} \times \mathbf{b} is the cross product of the vectors.
  • ∣a∣|\mathbf{a}| and ∣b∣|\mathbf{b}| are the magnitudes of vectors a\mathbf{a} and b\mathbf{b}.

Solution

Part (i): Compute the unit vector perpendicular to the plane and the sine of the angle between aβ€Ύ\underline{a} and bβ€Ύ\underline{b}

Given vectors:

aβ€Ύ=2iβ€Ύβˆ’6jβ€Ύβˆ’3kβ€Ύ,bβ€Ύ=4iβ€Ύ+3jβ€Ύβˆ’kβ€Ύ\underline{\mathbf{a}} = 2\underline{\mathbf{i}} - 6\underline{\mathbf{j}} - 3\underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = 4\underline{\mathbf{i}} + 3\underline{\mathbf{j}} - \underline{\mathbf{k}}

First, we compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} using the determinant formula:

aβ€ΎΓ—bβ€Ύ=∣ijk2βˆ’6βˆ’343βˆ’1∣\underline{a} \times \underline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} 2 & -6 & -3 4 & 3 & -1 \end{vmatrix}

Expanding the determinant:

aβ€ΎΓ—bβ€Ύ=i(6+9)βˆ’j(βˆ’2+12)+k(6+24)\underline{a} \times \underline{b} = \mathbf{i}(6 + 9) - \mathbf{j}(-2 + 12) + \mathbf{k}(6 + 24) aβ€ΎΓ—bβ€Ύ=15iβˆ’10j+30k\underline{a} \times \underline{b} = 15 \mathbf{i} - 10 \mathbf{j} + 30 \mathbf{k}

Next, compute the magnitude of the cross product:

∣aβ€ΎΓ—bβ€Ύβˆ£=(15)2+(βˆ’10)2+(30)2=1225=35|\underline{a} \times \underline{b}| = \sqrt{(15)^2 + (-10)^2 + (30)^2} = \sqrt{1225} = 35

The unit vector perpendicular to the plane is:

n^=aβ€ΎΓ—bβ€Ύβˆ£aβ€ΎΓ—bβ€Ύβˆ£=15iβˆ’10j+30k35=37iβˆ’27j+67k\hat{n} = \frac{\underline{a} \times \underline{b}}{|\underline{a} \times \underline{b}|} = \frac{15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}}{35} = \frac{3}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}

Next, compute the magnitudes of aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

∣aβ€Ύβˆ£=22+(βˆ’6)2+(βˆ’3)2=4+36+9=7|\underline{a}| = \sqrt{2^2 + (-6)^2 + (-3)^2} = \sqrt{4 + 36 + 9} = 7 ∣bβ€Ύβˆ£=42+32+(βˆ’1)2=16+9+1=26|\underline{b}| = \sqrt{4^2 + 3^2 + (-1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26}

Now, calculate the sine of the angle ΞΈ\theta between aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

sin⁑θ=∣aβ€ΎΓ—bβ€Ύβˆ£βˆ£aβ€Ύβˆ£β‹…βˆ£bβ€Ύβˆ£=357β‹…26=526\sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{35}{7 \cdot \sqrt{26}} = \frac{5}{\sqrt{26}}

Part (ii): Compute the unit vector perpendicular to the plane and the sine of the angle between aβ€Ύ=βˆ’iβˆ’jβˆ’k\underline{a} = -\mathbf{i} - \mathbf{j} - \mathbf{k} and bβ€Ύ=2iβˆ’3j+4k\underline{b} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}

Given vectors:

aβ€Ύ=βˆ’iβˆ’jβˆ’k,bβ€Ύ=2iβˆ’3j+4k\underline{\mathbf{a}} = -\mathbf{i} - \mathbf{j} - \mathbf{k}, \quad \underline{\mathbf{b}} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}

First, compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}:

aβ€ΎΓ—bβ€Ύ=∣ijkβˆ’1βˆ’1βˆ’12βˆ’34∣\underline{a} \times \underline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} -1 & -1 & -1 2 & -3 & 4 \end{vmatrix}

Expanding the determinant:

aβ€ΎΓ—bβ€Ύ=i(βˆ’4βˆ’3)βˆ’j(βˆ’4+2)+k(3+2)\underline{a} \times \underline{b} = \mathbf{i}(-4 - 3) - \mathbf{j}(-4 + 2) + \mathbf{k}(3 + 2) aβ€ΎΓ—bβ€Ύ=βˆ’7i+2j+5k\underline{a} \times \underline{b} = -7\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}

Now, compute the magnitude of the cross product:

∣aβ€ΎΓ—bβ€Ύβˆ£=(βˆ’7)2+22+52=49+4+25=78|\underline{a} \times \underline{b}| = \sqrt{(-7)^2 + 2^2 + 5^2} = \sqrt{49 + 4 + 25} = \sqrt{78}

Next, compute the magnitudes of aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

∣aβ€Ύβˆ£=(βˆ’1)2+(βˆ’1)2+(βˆ’1)2=3|\underline{a}| = \sqrt{(-1)^2 + (-1)^2 + (-1)^2} = \sqrt{3} ∣bβ€Ύβˆ£=22+(βˆ’3)2+42=29|\underline{b}| = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{29}

Now, calculate the sine of the angle ΞΈ\theta between aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

sin⁑θ=∣aβ€ΎΓ—bβ€Ύβˆ£βˆ£aβ€Ύβˆ£β‹…βˆ£bβ€Ύβˆ£=783β‹…29=7887=2629\sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{\sqrt{78}}{\sqrt{3} \cdot \sqrt{29}} = \sqrt{\frac{78}{87}} = \sqrt{\frac{26}{29}}

Part (iii): Compute the unit vector perpendicular to the plane and the sine of the angle between aβ€Ύ=2iβˆ’2j+4k\underline{a} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} and bβ€Ύ=βˆ’i+3jβˆ’2k\underline{b} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}

Given vectors:

aβ€Ύ=2iβˆ’2j+4k,bβ€Ύ=βˆ’i+3jβˆ’2k\underline{\mathbf{a}} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}, \quad \underline{\mathbf{b}} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}

Compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}:

aβ€ΎΓ—bβ€Ύ=∣ijk2βˆ’24βˆ’11βˆ’2∣\underline{a} \times \underline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} 2 & -2 & 4 -1 & 1 & -2 \end{vmatrix}

Expanding the determinant:

aβ€ΎΓ—bβ€Ύ=i(4βˆ’4)βˆ’j(βˆ’4+4)+k(2βˆ’2)\underline{a} \times \underline{b} = \mathbf{i}(4 - 4) - \mathbf{j}(-4 + 4) + \mathbf{k}(2 - 2) aβ€ΎΓ—bβ€Ύ=0iβˆ’0j+0k\underline{a} \times \underline{b} = 0 \mathbf{i} - 0 \mathbf{j} + 0 \mathbf{k}

Since the cross product is the null vector, the vectors aβ€Ύ\underline{a} and bβ€Ύ\underline{b} are parallel and the sine of the angle between them is:

sin⁑θ=0\sin \theta = 0

Part (iv): Compute the unit vector perpendicular to the plane and the sine of the angle between aβ€Ύ=i+j\underline{a} = \mathbf{i} + \mathbf{j} and bβ€Ύ=iβˆ’j\underline{b} = \mathbf{i} - \mathbf{j}

Given vectors:

aβ€Ύ=i+j,bβ€Ύ=iβˆ’j\underline{\mathbf{a}} = \mathbf{i} + \mathbf{j}, \quad \underline{\mathbf{b}} = \mathbf{i} - \mathbf{j}

Compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b}:

aβ€ΎΓ—bβ€Ύ=∣ijk1101βˆ’10∣\underline{a} \times \underline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} 1 & 1 & 0 1 & -1 & 0 \end{vmatrix}

Expanding the determinant:

aβ€ΎΓ—bβ€Ύ=i(0βˆ’0)βˆ’j(0βˆ’0)+k(βˆ’1βˆ’1)\underline{a} \times \underline{b} = \mathbf{i}(0 - 0) - \mathbf{j}(0 - 0) + \mathbf{k}(-1 - 1) aβ€ΎΓ—bβ€Ύ=βˆ’2k\underline{a} \times \underline{b} = -2 \mathbf{k}

Now, compute the magnitude of the cross product:

∣aβ€ΎΓ—bβ€Ύβˆ£=(βˆ’2)2=4=2|\underline{a} \times \underline{b}| = \sqrt{(-2)^2} = \sqrt{4} = 2

Now, compute the magnitudes of aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

∣aβ€Ύβˆ£=12+12=2,∣bβ€Ύβˆ£=12+(βˆ’1)2=2|\underline{a}| = \sqrt{1^2 + 1^2} = \sqrt{2}, \quad |\underline{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{2}

Now, calculate the sine of the angle ΞΈ\theta between aβ€Ύ\underline{a} and bβ€Ύ\underline{b}:

sin⁑θ=∣aβ€ΎΓ—bβ€Ύβˆ£βˆ£aβ€Ύβˆ£β‹…βˆ£bβ€Ύβˆ£=22Γ—2=22=1\sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{2}{\sqrt{2} \times \sqrt{2}} = \frac{2}{2} = 1

Key Formulas or Methods Used

  1. Cross Product:
aΓ—b=∣ijka1a2a3b1b2b3∣ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} a_1 & a_2 & a_3 b_1 & b_2 & b_3 \end{vmatrix}
  1. Perpendicular Unit Vector:
n^=aΓ—b∣aΓ—b∣ \hat{n} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}
  1. Sine of the Angle:
sin⁑θ=∣aΓ—b∣∣aβˆ£β‹…βˆ£b∣ \sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| \cdot |\mathbf{b}|}

Summary of Steps

  1. Compute the cross product aβ€ΎΓ—bβ€Ύ\underline{a} \times \underline{b} using the determinant formula.
  2. Compute the magnitude of the cross product and normalize it to find the unit vector.
  3. Compute the magnitudes of aβ€Ύ\underline{a} and bβ€Ύ\underline{b}.
  4. Use the formula for sin⁑θ\sin \theta to find the sine of the angle between the vectors.