Question Statement
Find a unit vector perpendicular to the plane containing a βΎ \underline{a} a β and b βΎ \underline{b} b β . Also, find the sine of the angle between them.
Given vectors:
(i) a βΎ = 2 i βΎ β 6 j βΎ β 3 k βΎ \underline{\mathbf{a}} = 2 \underline{\mathbf{i}} - 6 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}} a β = 2 i β β 6 j β β 3 k β ,
b βΎ = 4 i βΎ + 3 j βΎ β k βΎ \underline{\mathbf{b}} = 4 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - \underline{\mathbf{k}} b β = 4 i β + 3 j β β k β
Background and Explanation
In vector algebra, the cross product of two vectors a \mathbf{a} a and b \mathbf{b} b results in a vector that is perpendicular to the plane containing a \mathbf{a} a and b \mathbf{b} b . To find a unit vector perpendicular to the plane, we normalize the cross product vector by dividing it by its magnitude.
To find the sine of the angle ΞΈ \theta ΞΈ between two vectors, we can use the formula:
sin β‘ ΞΈ = β£ a Γ b β£ β£ a β£ β
β£ b β£ \sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| \cdot |\mathbf{b}|} sin ΞΈ = β£ a β£ β
β£ b β£ β£ a Γ b β£ β
Where:
a Γ b \mathbf{a} \times \mathbf{b} a Γ b is the cross product of the vectors.
β£ a β£ |\mathbf{a}| β£ a β£ and β£ b β£ |\mathbf{b}| β£ b β£ are the magnitudes of vectors a \mathbf{a} a and b \mathbf{b} b .
Solution
Part (i): Compute the unit vector perpendicular to the plane and the sine of the angle between a βΎ \underline{a} a β and b βΎ \underline{b} b β
Given vectors:
a βΎ = 2 i βΎ β 6 j βΎ β 3 k βΎ , b βΎ = 4 i βΎ + 3 j βΎ β k βΎ \underline{\mathbf{a}} = 2\underline{\mathbf{i}} - 6\underline{\mathbf{j}} - 3\underline{\mathbf{k}}, \quad \underline{\mathbf{b}} = 4\underline{\mathbf{i}} + 3\underline{\mathbf{j}} - \underline{\mathbf{k}} a β = 2 i β β 6 j β β 3 k β , b β = 4 i β + 3 j β β k β
First, we compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β using the determinant formula:
a βΎ Γ b βΎ = β£ i j k 2 β 6 β 34 3 β 1 β£ \underline{a} \times \underline{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
2 & -6 & -3
4 & 3 & -1
\end{vmatrix} a β Γ b β = β i β j β k 2 β β 6 β β 34 β 3 β β 1 β β
Expanding the determinant:
a βΎ Γ b βΎ = i ( 6 + 9 ) β j ( β 2 + 12 ) + k ( 6 + 24 ) \underline{a} \times \underline{b} = \mathbf{i}(6 + 9) - \mathbf{j}(-2 + 12) + \mathbf{k}(6 + 24) a β Γ b β = i ( 6 + 9 ) β j ( β 2 + 12 ) + k ( 6 + 24 )
a βΎ Γ b βΎ = 15 i β 10 j + 30 k \underline{a} \times \underline{b} = 15 \mathbf{i} - 10 \mathbf{j} + 30 \mathbf{k} a β Γ b β = 15 i β 10 j + 30 k
Next, compute the magnitude of the cross product:
β£ a βΎ Γ b βΎ β£ = ( 15 ) 2 + ( β 10 ) 2 + ( 30 ) 2 = 1225 = 35 |\underline{a} \times \underline{b}| = \sqrt{(15)^2 + (-10)^2 + (30)^2} = \sqrt{1225} = 35 β£ a β Γ b β β£ = ( 15 ) 2 + ( β 10 ) 2 + ( 30 ) 2 β = 1225 β = 35
The unit vector perpendicular to the plane is:
n ^ = a βΎ Γ b βΎ β£ a βΎ Γ b βΎ β£ = 15 i β 10 j + 30 k 35 = 3 7 i β 2 7 j + 6 7 k \hat{n} = \frac{\underline{a} \times \underline{b}}{|\underline{a} \times \underline{b}|} = \frac{15\mathbf{i} - 10\mathbf{j} + 30\mathbf{k}}{35} = \frac{3}{7}\mathbf{i} - \frac{2}{7}\mathbf{j} + \frac{6}{7}\mathbf{k} n ^ = β£ a β Γ b β β£ a β Γ b β β = 35 15 i β 10 j + 30 k β = 7 3 β i β 7 2 β j + 7 6 β k
Next, compute the magnitudes of a βΎ \underline{a} a β and b βΎ \underline{b} b β :
β£ a βΎ β£ = 2 2 + ( β 6 ) 2 + ( β 3 ) 2 = 4 + 36 + 9 = 7 |\underline{a}| = \sqrt{2^2 + (-6)^2 + (-3)^2} = \sqrt{4 + 36 + 9} = 7 β£ a β β£ = 2 2 + ( β 6 ) 2 + ( β 3 ) 2 β = 4 + 36 + 9 β = 7
β£ b βΎ β£ = 4 2 + 3 2 + ( β 1 ) 2 = 16 + 9 + 1 = 26 |\underline{b}| = \sqrt{4^2 + 3^2 + (-1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} β£ b β β£ = 4 2 + 3 2 + ( β 1 ) 2 β = 16 + 9 + 1 β = 26 β
Now, calculate the sine of the angle ΞΈ \theta ΞΈ between a βΎ \underline{a} a β and b βΎ \underline{b} b β :
sin β‘ ΞΈ = β£ a βΎ Γ b βΎ β£ β£ a βΎ β£ β
β£ b βΎ β£ = 35 7 β
26 = 5 26 \sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{35}{7 \cdot \sqrt{26}} = \frac{5}{\sqrt{26}} sin ΞΈ = β£ a β β£ β
β£ b β β£ β£ a β Γ b β β£ β = 7 β
26 β 35 β = 26 β 5 β
Part (ii): Compute the unit vector perpendicular to the plane and the sine of the angle between a βΎ = β i β j β k \underline{a} = -\mathbf{i} - \mathbf{j} - \mathbf{k} a β = β i β j β k and b βΎ = 2 i β 3 j + 4 k \underline{b} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} b β = 2 i β 3 j + 4 k
Given vectors:
a βΎ = β i β j β k , b βΎ = 2 i β 3 j + 4 k \underline{\mathbf{a}} = -\mathbf{i} - \mathbf{j} - \mathbf{k}, \quad \underline{\mathbf{b}} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} a β = β i β j β k , b β = 2 i β 3 j + 4 k
First, compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β :
a βΎ Γ b βΎ = β£ i j k β 1 β 1 β 12 β 3 4 β£ \underline{a} \times \underline{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
-1 & -1 & -1
2 & -3 & 4
\end{vmatrix} a β Γ b β = β i β j β k β 1 β β 1 β β 12 β β 3 β 4 β β
Expanding the determinant:
a βΎ Γ b βΎ = i ( β 4 β 3 ) β j ( β 4 + 2 ) + k ( 3 + 2 ) \underline{a} \times \underline{b} = \mathbf{i}(-4 - 3) - \mathbf{j}(-4 + 2) + \mathbf{k}(3 + 2) a β Γ b β = i ( β 4 β 3 ) β j ( β 4 + 2 ) + k ( 3 + 2 )
a βΎ Γ b βΎ = β 7 i + 2 j + 5 k \underline{a} \times \underline{b} = -7\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} a β Γ b β = β 7 i + 2 j + 5 k
Now, compute the magnitude of the cross product:
β£ a βΎ Γ b βΎ β£ = ( β 7 ) 2 + 2 2 + 5 2 = 49 + 4 + 25 = 78 |\underline{a} \times \underline{b}| = \sqrt{(-7)^2 + 2^2 + 5^2} = \sqrt{49 + 4 + 25} = \sqrt{78} β£ a β Γ b β β£ = ( β 7 ) 2 + 2 2 + 5 2 β = 49 + 4 + 25 β = 78 β
Next, compute the magnitudes of a βΎ \underline{a} a β and b βΎ \underline{b} b β :
β£ a βΎ β£ = ( β 1 ) 2 + ( β 1 ) 2 + ( β 1 ) 2 = 3 |\underline{a}| = \sqrt{(-1)^2 + (-1)^2 + (-1)^2} = \sqrt{3} β£ a β β£ = ( β 1 ) 2 + ( β 1 ) 2 + ( β 1 ) 2 β = 3 β
β£ b βΎ β£ = 2 2 + ( β 3 ) 2 + 4 2 = 29 |\underline{b}| = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{29} β£ b β β£ = 2 2 + ( β 3 ) 2 + 4 2 β = 29 β
Now, calculate the sine of the angle ΞΈ \theta ΞΈ between a βΎ \underline{a} a β and b βΎ \underline{b} b β :
sin β‘ ΞΈ = β£ a βΎ Γ b βΎ β£ β£ a βΎ β£ β
β£ b βΎ β£ = 78 3 β
29 = 78 87 = 26 29 \sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{\sqrt{78}}{\sqrt{3} \cdot \sqrt{29}} = \sqrt{\frac{78}{87}} = \sqrt{\frac{26}{29}} sin ΞΈ = β£ a β β£ β
β£ b β β£ β£ a β Γ b β β£ β = 3 β β
29 β 78 β β = 87 78 β β = 29 26 β β
Part (iii): Compute the unit vector perpendicular to the plane and the sine of the angle between a βΎ = 2 i β 2 j + 4 k \underline{a} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} a β = 2 i β 2 j + 4 k and b βΎ = β i + 3 j β 2 k \underline{b} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} b β = β i + 3 j β 2 k
Given vectors:
a βΎ = 2 i β 2 j + 4 k , b βΎ = β i + 3 j β 2 k \underline{\mathbf{a}} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}, \quad \underline{\mathbf{b}} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} a β = 2 i β 2 j + 4 k , b β = β i + 3 j β 2 k
Compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β :
a βΎ Γ b βΎ = β£ i j k 2 β 2 4 β 1 1 β 2 β£ \underline{a} \times \underline{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
2 & -2 & 4
-1 & 1 & -2
\end{vmatrix} a β Γ b β = β i β j β k 2 β β 2 β 4 β 1 β 1 β β 2 β β
Expanding the determinant:
a βΎ Γ b βΎ = i ( 4 β 4 ) β j ( β 4 + 4 ) + k ( 2 β 2 ) \underline{a} \times \underline{b} = \mathbf{i}(4 - 4) - \mathbf{j}(-4 + 4) + \mathbf{k}(2 - 2) a β Γ b β = i ( 4 β 4 ) β j ( β 4 + 4 ) + k ( 2 β 2 )
a βΎ Γ b βΎ = 0 i β 0 j + 0 k \underline{a} \times \underline{b} = 0 \mathbf{i} - 0 \mathbf{j} + 0 \mathbf{k} a β Γ b β = 0 i β 0 j + 0 k
Since the cross product is the null vector , the vectors a βΎ \underline{a} a β and b βΎ \underline{b} b β are parallel and the sine of the angle between them is:
sin β‘ ΞΈ = 0 \sin \theta = 0 sin ΞΈ = 0
Part (iv): Compute the unit vector perpendicular to the plane and the sine of the angle between a βΎ = i + j \underline{a} = \mathbf{i} + \mathbf{j} a β = i + j and b βΎ = i β j \underline{b} = \mathbf{i} - \mathbf{j} b β = i β j
Given vectors:
a βΎ = i + j , b βΎ = i β j \underline{\mathbf{a}} = \mathbf{i} + \mathbf{j}, \quad \underline{\mathbf{b}} = \mathbf{i} - \mathbf{j} a β = i + j , b β = i β j
Compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β :
a βΎ Γ b βΎ = β£ i j k 1 1 01 β 1 0 β£ \underline{a} \times \underline{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
1 & 1 & 0
1 & -1 & 0
\end{vmatrix} a β Γ b β = β i β j β k 1 β 1 β 01 β β 1 β 0 β β
Expanding the determinant:
a βΎ Γ b βΎ = i ( 0 β 0 ) β j ( 0 β 0 ) + k ( β 1 β 1 ) \underline{a} \times \underline{b} = \mathbf{i}(0 - 0) - \mathbf{j}(0 - 0) + \mathbf{k}(-1 - 1) a β Γ b β = i ( 0 β 0 ) β j ( 0 β 0 ) + k ( β 1 β 1 )
a βΎ Γ b βΎ = β 2 k \underline{a} \times \underline{b} = -2 \mathbf{k} a β Γ b β = β 2 k
Now, compute the magnitude of the cross product:
β£ a βΎ Γ b βΎ β£ = ( β 2 ) 2 = 4 = 2 |\underline{a} \times \underline{b}| = \sqrt{(-2)^2} = \sqrt{4} = 2 β£ a β Γ b β β£ = ( β 2 ) 2 β = 4 β = 2
Now, compute the magnitudes of a βΎ \underline{a} a β and b βΎ \underline{b} b β :
β£ a βΎ β£ = 1 2 + 1 2 = 2 , β£ b βΎ β£ = 1 2 + ( β 1 ) 2 = 2 |\underline{a}| = \sqrt{1^2 + 1^2} = \sqrt{2}, \quad |\underline{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{2} β£ a β β£ = 1 2 + 1 2 β = 2 β , β£ b β β£ = 1 2 + ( β 1 ) 2 β = 2 β
Now, calculate the sine of the angle ΞΈ \theta ΞΈ between a βΎ \underline{a} a β and b βΎ \underline{b} b β :
sin β‘ ΞΈ = β£ a βΎ Γ b βΎ β£ β£ a βΎ β£ β
β£ b βΎ β£ = 2 2 Γ 2 = 2 2 = 1 \sin \theta = \frac{|\underline{a} \times \underline{b}|}{|\underline{a}| \cdot |\underline{b}|} = \frac{2}{\sqrt{2} \times \sqrt{2}} = \frac{2}{2} = 1 sin ΞΈ = β£ a β β£ β
β£ b β β£ β£ a β Γ b β β£ β = 2 β Γ 2 β 2 β = 2 2 β = 1
Cross Product :
a Γ b = β£ i j k a 1 a 2 a 3 b 1 b 2 b 3 β£ \mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
a_1 & a_2 & a_3
b_1 & b_2 & b_3
\end{vmatrix} a Γ b = β i β j β k a 1 β β a 2 β β a 3 β b 1 β β b 2 β β b 3 β β β
Perpendicular Unit Vector :
n ^ = a Γ b β£ a Γ b β£ \hat{n} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|} n ^ = β£ a Γ b β£ a Γ b β
Sine of the Angle :
sin β‘ ΞΈ = β£ a Γ b β£ β£ a β£ β
β£ b β£ \sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| \cdot |\mathbf{b}|} sin ΞΈ = β£ a β£ β
β£ b β£ β£ a Γ b β£ β
Summary of Steps
Compute the cross product a βΎ Γ b βΎ \underline{a} \times \underline{b} a β Γ b β using the determinant formula.
Compute the magnitude of the cross product and normalize it to find the unit vector.
Compute the magnitudes of a βΎ \underline{a} a β and b βΎ \underline{b} b β .
Use the formula for sin β‘ ΞΈ \sin \theta sin ΞΈ to find the sine of the angle between the vectors.