Question Statement
Find the area of the triangle formed by the points P P P , Q Q Q , and R R R .
(i) P ( 0 , 0 , 0 ) P(0,0,0) P ( 0 , 0 , 0 ) , Q ( 2 , 3 , 2 ) Q(2,3,2) Q ( 2 , 3 , 2 ) , R ( β 1 , 1 , 4 ) R(-1,1,4) R ( β 1 , 1 , 4 )
(ii) P ( 1 , β 1 , β 1 ) P(1,-1,-1) P ( 1 , β 1 , β 1 ) , Q ( 2 , 0 , β 1 ) Q(2,0,-1) Q ( 2 , 0 , β 1 ) , R ( 0 , 2 , 1 ) R(0,2,1) R ( 0 , 2 , 1 )
Background and Explanation
To solve for the area of a triangle formed by three points in a 3D space, we use the cross product method. The formula for the area of a triangle with vertices P P P , Q Q Q , and R R R is:
AreaΒ ofΒ β³ P Q R = 1 2 β£ P Q β Γ P R β β£ \text{Area of } \triangle PQR = \frac{1}{2} | \overrightarrow{PQ} \times \overrightarrow{PR} | AreaΒ ofΒ β³ PQR = 2 1 β β£ PQ β Γ PR β£
Where:
P Q β \overrightarrow{PQ} PQ β is the vector from point P P P to point Q Q Q ,
P R β \overrightarrow{PR} PR is the vector from point P P P to point R R R ,
The magnitude of the cross product of two vectors gives the area of the parallelogram formed by these vectors, and half of this value gives the area of the triangle.
Solution
Part (i)
We are given the points P ( 0 , 0 , 0 ) P(0,0,0) P ( 0 , 0 , 0 ) , Q ( 2 , 3 , 2 ) Q(2,3,2) Q ( 2 , 3 , 2 ) , and R ( β 1 , 1 , 4 ) R(-1,1,4) R ( β 1 , 1 , 4 ) . The area can be found using the formula:
Area = 1 2 β£ P Q β Γ P R β β£ \text{Area} = \frac{1}{2} | \overrightarrow{PQ} \times \overrightarrow{PR} | Area = 2 1 β β£ PQ β Γ PR β£
Step 1: Calculate the vectors P Q β \overrightarrow{PQ} PQ β and P R β \overrightarrow{PR} PR
P Q β = Q β P = ( 2 , 3 , 2 ) β ( 0 , 0 , 0 ) = ( 2 , 3 , 2 ) \overrightarrow{PQ} = Q - P = (2,3,2) - (0,0,0) = (2,3,2) PQ β = Q β P = ( 2 , 3 , 2 ) β ( 0 , 0 , 0 ) = ( 2 , 3 , 2 )
P R β = R β P = ( β 1 , 1 , 4 ) β ( 0 , 0 , 0 ) = ( β 1 , 1 , 4 ) \overrightarrow{PR} = R - P = (-1,1,4) - (0,0,0) = (-1,1,4) PR = R β P = ( β 1 , 1 , 4 ) β ( 0 , 0 , 0 ) = ( β 1 , 1 , 4 )
Step 2: Find the cross product P Q β Γ P R β \overrightarrow{PQ} \times \overrightarrow{PR} PQ β Γ PR
The cross product formula in component form is:
P Q β Γ P R β = β£ i ^ j ^ k ^ 2 3 2 β 1 1 4 β£ \overrightarrow{PQ} \times \overrightarrow{PR} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
2 & 3 & 2
-1 & 1 & 4
\end{array} \right| PQ β Γ PR = β i ^ β j ^ β β k ^ 2 β 3 β 2 β 1 β 1 β 4 β β
Expanding the determinant:
= i ^ ( 3 Γ 4 β 2 Γ 1 ) β j ^ ( 2 Γ 4 β 2 Γ ( β 1 ) ) + k ^ ( 2 Γ 1 β 3 Γ ( β 1 ) ) = \hat{i} \left( 3 \times 4 - 2 \times 1 \right) - \hat{j} \left( 2 \times 4 - 2 \times (-1) \right) + \hat{k} \left( 2 \times 1 - 3 \times (-1) \right) = i ^ ( 3 Γ 4 β 2 Γ 1 ) β j ^ β ( 2 Γ 4 β 2 Γ ( β 1 ) ) + k ^ ( 2 Γ 1 β 3 Γ ( β 1 ) )
= i ^ ( 12 β 2 ) β j ^ ( 8 + 2 ) + k ^ ( 2 + 3 ) = \hat{i} (12 - 2) - \hat{j} (8 + 2) + \hat{k} (2 + 3) = i ^ ( 12 β 2 ) β j ^ β ( 8 + 2 ) + k ^ ( 2 + 3 )
= 10 i ^ β 10 j ^ + 5 k ^ = 10\hat{i} - 10\hat{j} + 5\hat{k} = 10 i ^ β 10 j ^ β + 5 k ^
Step 3: Calculate the magnitude of the cross product
β£ P Q β Γ P R β β£ = ( 10 ) 2 + ( β 10 ) 2 + ( 5 ) 2 |\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(10)^2 + (-10)^2 + (5)^2} β£ PQ β Γ PR β£ = ( 10 ) 2 + ( β 10 ) 2 + ( 5 ) 2 β
= 100 + 100 + 25 = 225 = 15 = \sqrt{100 + 100 + 25} = \sqrt{225} = 15 = 100 + 100 + 25 β = 225 β = 15
Step 4: Calculate the area
Area = 1 2 Γ 15 = 15 2 , squareΒ units \text{Area} = \frac{1}{2} \times 15 = \frac{15}{2} , \text{square units} Area = 2 1 β Γ 15 = 2 15 β , squareΒ units
Part (ii)
Now, we are given the points P ( 1 , β 1 , β 1 ) P(1,-1,-1) P ( 1 , β 1 , β 1 ) , Q ( 2 , 0 , β 1 ) Q(2,0,-1) Q ( 2 , 0 , β 1 ) , and R ( 0 , 2 , 1 ) R(0,2,1) R ( 0 , 2 , 1 ) . The same steps are followed:
Step 1: Calculate the vectors P Q β \overrightarrow{PQ} PQ β and P R β \overrightarrow{PR} PR
P Q β = Q β P = ( 2 , 0 , β 1 ) β ( 1 , β 1 , β 1 ) = ( 1 , 1 , 0 ) \overrightarrow{PQ} = Q - P = (2,0,-1) - (1,-1,-1) = (1,1,0) PQ β = Q β P = ( 2 , 0 , β 1 ) β ( 1 , β 1 , β 1 ) = ( 1 , 1 , 0 )
P R β = R β P = ( 0 , 2 , 1 ) β ( 1 , β 1 , β 1 ) = ( β 1 , 3 , 2 ) \overrightarrow{PR} = R - P = (0,2,1) - (1,-1,-1) = (-1,3,2) PR = R β P = ( 0 , 2 , 1 ) β ( 1 , β 1 , β 1 ) = ( β 1 , 3 , 2 )
Step 2: Find the cross product P Q β Γ P R β \overrightarrow{PQ} \times \overrightarrow{PR} PQ β Γ PR
Using the determinant formula:
P Q β Γ P R β = β£ i ^ j ^ k ^ 1 1 0 β 1 3 2 β£ \overrightarrow{PQ} \times \overrightarrow{PR} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
1 & 1 & 0
-1 & 3 & 2
\end{array} \right| PQ β Γ PR = β i ^ β j ^ β β k ^ 1 β 1 β 0 β 1 β 3 β 2 β β
Expanding the determinant:
= i ^ ( 1 Γ 2 β 0 Γ 3 ) β j ^ ( 1 Γ 2 β 0 Γ ( β 1 ) ) + k ^ ( 1 Γ 3 β 1 Γ ( β 1 ) ) = \hat{i} \left( 1 \times 2 - 0 \times 3 \right) - \hat{j} \left( 1 \times 2 - 0 \times (-1) \right) + \hat{k} \left( 1 \times 3 - 1 \times (-1) \right) = i ^ ( 1 Γ 2 β 0 Γ 3 ) β j ^ β ( 1 Γ 2 β 0 Γ ( β 1 ) ) + k ^ ( 1 Γ 3 β 1 Γ ( β 1 ) )
= i ^ ( 2 ) β j ^ ( 2 ) + k ^ ( 3 + 1 ) = \hat{i} (2) - \hat{j} (2) + \hat{k} (3 + 1) = i ^ ( 2 ) β j ^ β ( 2 ) + k ^ ( 3 + 1 )
= 2 i ^ β 2 j ^ + 4 k ^ = 2\hat{i} - 2\hat{j} + 4\hat{k} = 2 i ^ β 2 j ^ β + 4 k ^
Step 3: Calculate the magnitude of the cross product
β£ P Q β Γ P R β β£ = ( 2 ) 2 + ( β 2 ) 2 + ( 4 ) 2 |\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(2)^2 + (-2)^2 + (4)^2} β£ PQ β Γ PR β£ = ( 2 ) 2 + ( β 2 ) 2 + ( 4 ) 2 β
= 4 + 4 + 16 = 24 = 2 6 = \sqrt{4 + 4 + 16} = \sqrt{24} = 2\sqrt{6} = 4 + 4 + 16 β = 24 β = 2 6 β
Step 4: Calculate the area
Area = 1 2 Γ 2 6 = 6 , squareΒ units \text{Area} = \frac{1}{2} \times 2\sqrt{6} = \sqrt{6} , \text{square units} Area = 2 1 β Γ 2 6 β = 6 β , squareΒ units
A β Γ B β = β£ i ^ j ^ k ^ A x A y A z B x B y B z β£ \overrightarrow{A} \times \overrightarrow{B} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
A_x & A_y & A_z
B_x & B_y & B_z
\end{array} \right| A Γ B = β i ^ β j ^ β β k ^ A x β β A y β β A z β B x β β B y β β B z β β β
Area = 1 2 β£ P Q β Γ P R β β£ \text{Area} = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}| Area = 2 1 β β£ PQ β Γ PR β£
Summary of Steps
For Part (i) :
Calculate vectors P Q β \overrightarrow{PQ} PQ β and P R β \overrightarrow{PR} PR .
Find the cross product P Q β Γ P R β \overrightarrow{PQ} \times \overrightarrow{PR} PQ β Γ PR .
Compute the magnitude of the cross product.
Calculate the area as 1 2 \frac{1}{2} 2 1 β of the magnitude.
For Part (ii) :
Repeat the steps for the given points P ( 1 , β 1 , β 1 ) P(1,-1,-1) P ( 1 , β 1 , β 1 ) , Q ( 2 , 0 , β 1 ) Q(2,0,-1) Q ( 2 , 0 , β 1 ) , and R ( 0 , 2 , 1 ) R(0,2,1) R ( 0 , 2 , 1 ) .