Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.4 Q-3

Question Statement

Find the area of the triangle formed by the points PP, QQ, and RR.

(i) P(0,0,0)P(0,0,0), Q(2,3,2)Q(2,3,2), R(βˆ’1,1,4)R(-1,1,4)

(ii) P(1,βˆ’1,βˆ’1)P(1,-1,-1), Q(2,0,βˆ’1)Q(2,0,-1), R(0,2,1)R(0,2,1)


Background and Explanation

To solve for the area of a triangle formed by three points in a 3D space, we use the cross product method. The formula for the area of a triangle with vertices PP, QQ, and RR is:

AreaΒ ofΒ β–³PQR=12∣PQβ†’Γ—PRβ†’βˆ£\text{Area of } \triangle PQR = \frac{1}{2} | \overrightarrow{PQ} \times \overrightarrow{PR} |

Where:

  • PQβ†’\overrightarrow{PQ} is the vector from point PP to point QQ,
  • PRβ†’\overrightarrow{PR} is the vector from point PP to point RR,

The magnitude of the cross product of two vectors gives the area of the parallelogram formed by these vectors, and half of this value gives the area of the triangle.


Solution

Part (i)

We are given the points P(0,0,0)P(0,0,0), Q(2,3,2)Q(2,3,2), and R(βˆ’1,1,4)R(-1,1,4). The area can be found using the formula:

Area=12∣PQβ†’Γ—PRβ†’βˆ£\text{Area} = \frac{1}{2} | \overrightarrow{PQ} \times \overrightarrow{PR} |

Step 1: Calculate the vectors PQ→\overrightarrow{PQ} and PR→\overrightarrow{PR}

PQβ†’=Qβˆ’P=(2,3,2)βˆ’(0,0,0)=(2,3,2)\overrightarrow{PQ} = Q - P = (2,3,2) - (0,0,0) = (2,3,2) PRβ†’=Rβˆ’P=(βˆ’1,1,4)βˆ’(0,0,0)=(βˆ’1,1,4)\overrightarrow{PR} = R - P = (-1,1,4) - (0,0,0) = (-1,1,4)

Step 2: Find the cross product PQ→×PR→\overrightarrow{PQ} \times \overrightarrow{PR}

The cross product formula in component form is:

PQβ†’Γ—PRβ†’=∣i^j^k^232βˆ’114∣\overrightarrow{PQ} \times \overrightarrow{PR} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 2 & 3 & 2 -1 & 1 & 4 \end{array} \right|

Expanding the determinant:

=i^(3Γ—4βˆ’2Γ—1)βˆ’j^(2Γ—4βˆ’2Γ—(βˆ’1))+k^(2Γ—1βˆ’3Γ—(βˆ’1))= \hat{i} \left( 3 \times 4 - 2 \times 1 \right) - \hat{j} \left( 2 \times 4 - 2 \times (-1) \right) + \hat{k} \left( 2 \times 1 - 3 \times (-1) \right) =i^(12βˆ’2)βˆ’j^(8+2)+k^(2+3)= \hat{i} (12 - 2) - \hat{j} (8 + 2) + \hat{k} (2 + 3) =10i^βˆ’10j^+5k^= 10\hat{i} - 10\hat{j} + 5\hat{k}

Step 3: Calculate the magnitude of the cross product

∣PQβ†’Γ—PRβ†’βˆ£=(10)2+(βˆ’10)2+(5)2|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(10)^2 + (-10)^2 + (5)^2} =100+100+25=225=15= \sqrt{100 + 100 + 25} = \sqrt{225} = 15

Step 4: Calculate the area

Area=12Γ—15=152,squareΒ units\text{Area} = \frac{1}{2} \times 15 = \frac{15}{2} , \text{square units}

Part (ii)

Now, we are given the points P(1,βˆ’1,βˆ’1)P(1,-1,-1), Q(2,0,βˆ’1)Q(2,0,-1), and R(0,2,1)R(0,2,1). The same steps are followed:

Step 1: Calculate the vectors PQ→\overrightarrow{PQ} and PR→\overrightarrow{PR}

PQβ†’=Qβˆ’P=(2,0,βˆ’1)βˆ’(1,βˆ’1,βˆ’1)=(1,1,0)\overrightarrow{PQ} = Q - P = (2,0,-1) - (1,-1,-1) = (1,1,0) PRβ†’=Rβˆ’P=(0,2,1)βˆ’(1,βˆ’1,βˆ’1)=(βˆ’1,3,2)\overrightarrow{PR} = R - P = (0,2,1) - (1,-1,-1) = (-1,3,2)

Step 2: Find the cross product PQ→×PR→\overrightarrow{PQ} \times \overrightarrow{PR}

Using the determinant formula:

PQβ†’Γ—PRβ†’=∣i^j^k^110βˆ’132∣\overrightarrow{PQ} \times \overrightarrow{PR} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 1 & 1 & 0 -1 & 3 & 2 \end{array} \right|

Expanding the determinant:

=i^(1Γ—2βˆ’0Γ—3)βˆ’j^(1Γ—2βˆ’0Γ—(βˆ’1))+k^(1Γ—3βˆ’1Γ—(βˆ’1))= \hat{i} \left( 1 \times 2 - 0 \times 3 \right) - \hat{j} \left( 1 \times 2 - 0 \times (-1) \right) + \hat{k} \left( 1 \times 3 - 1 \times (-1) \right) =i^(2)βˆ’j^(2)+k^(3+1)= \hat{i} (2) - \hat{j} (2) + \hat{k} (3 + 1) =2i^βˆ’2j^+4k^= 2\hat{i} - 2\hat{j} + 4\hat{k}

Step 3: Calculate the magnitude of the cross product

∣PQβ†’Γ—PRβ†’βˆ£=(2)2+(βˆ’2)2+(4)2|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(2)^2 + (-2)^2 + (4)^2} =4+4+16=24=26= \sqrt{4 + 4 + 16} = \sqrt{24} = 2\sqrt{6}

Step 4: Calculate the area

Area=12Γ—26=6,squareΒ units\text{Area} = \frac{1}{2} \times 2\sqrt{6} = \sqrt{6} , \text{square units}

Key Formulas or Methods Used

  • Cross Product Formula:
Aβ†’Γ—Bβ†’=∣i^j^k^AxAyAzBxByBz∣\overrightarrow{A} \times \overrightarrow{B} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} A_x & A_y & A_z B_x & B_y & B_z \end{array} \right|
  • Area of Triangle:
Area=12∣PQβ†’Γ—PRβ†’βˆ£\text{Area} = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}|

Summary of Steps

  1. For Part (i):

    • Calculate vectors PQβ†’\overrightarrow{PQ} and PRβ†’\overrightarrow{PR}.
    • Find the cross product PQβ†’Γ—PRβ†’\overrightarrow{PQ} \times \overrightarrow{PR}.
    • Compute the magnitude of the cross product.
    • Calculate the area as 12\frac{1}{2} of the magnitude.
  2. For Part (ii):

    • Repeat the steps for the given points P(1,βˆ’1,βˆ’1)P(1,-1,-1), Q(2,0,βˆ’1)Q(2,0,-1), and R(0,2,1)R(0,2,1).