Question Statement
Find the area of the parallelogram formed by the vertices A A A , B B B , C C C , and D D D .
(i) A ( 0 , 0 , 0 ) , B ( 1 , 2 , 3 ) , C ( 2 , β 1 , 1 ) , D ( 3 , 1 , 4 ) A(0,0,0), B(1,2,3), C(2,-1,1), D(3,1,4) A ( 0 , 0 , 0 ) , B ( 1 , 2 , 3 ) , C ( 2 , β 1 , 1 ) , D ( 3 , 1 , 4 )
(ii) A ( 1 , 2 , β 1 ) , B ( 4 , 2 , β 3 ) , C ( 6 , β 5 , 2 ) , D ( 9 , β 5 , 0 ) A(1,2,-1), B(4,2,-3), C(6,-5,2), D(9,-5,0) A ( 1 , 2 , β 1 ) , B ( 4 , 2 , β 3 ) , C ( 6 , β 5 , 2 ) , D ( 9 , β 5 , 0 )
(iii) A ( β 1 , 1 , 1 ) , B ( β 1 , 2 , 2 ) , C ( β 3 , 4 , β 5 ) , D ( β 3 , 5 , β 4 ) A(-1,1,1), B(-1,2,2), C(-3,4,-5), D(-3,5,-4) A ( β 1 , 1 , 1 ) , B ( β 1 , 2 , 2 ) , C ( β 3 , 4 , β 5 ) , D ( β 3 , 5 , β 4 )
Background and Explanation
To find the area of a parallelogram in 3D space, we use the following formula:
AreaΒ ofΒ parallelogram = β£ A B β Γ A C β β£ \text{Area of parallelogram} = |\overrightarrow{AB} \times \overrightarrow{AC}| AreaΒ ofΒ parallelogram = β£ A B Γ A C β£
Where:
A B β \overrightarrow{AB} A B and A C β \overrightarrow{AC} A C are vectors from point A A A to points B B B and C C C , respectively.
The cross product A B β Γ A C β \overrightarrow{AB} \times \overrightarrow{AC} A B Γ A C gives a vector perpendicular to the parallelogramβs plane, and its magnitude represents the area of the parallelogram.
Solution
Part (i)
We are given the points A ( 0 , 0 , 0 ) A(0,0,0) A ( 0 , 0 , 0 ) , B ( 1 , 2 , 3 ) B(1,2,3) B ( 1 , 2 , 3 ) , C ( 2 , β 1 , 1 ) C(2,-1,1) C ( 2 , β 1 , 1 ) , and D ( 3 , 1 , 4 ) D(3,1,4) D ( 3 , 1 , 4 ) . First, we check which sides are parallel. We find that A B β = C D β \overrightarrow{AB} = \overrightarrow{CD} A B = C D , so A B C D ABCD A BC D is a parallelogram.
Step 1: Calculate the vectors A B β \overrightarrow{AB} A B and A C β \overrightarrow{AC} A C
A B β = B β A = ( 1 , 2 , 3 ) β ( 0 , 0 , 0 ) = ( 1 , 2 , 3 ) \overrightarrow{AB} = B - A = (1,2,3) - (0,0,0) = (1,2,3) A B = B β A = ( 1 , 2 , 3 ) β ( 0 , 0 , 0 ) = ( 1 , 2 , 3 )
A C β = C β A = ( 2 , β 1 , 1 ) β ( 0 , 0 , 0 ) = ( 2 , β 1 , 1 ) \overrightarrow{AC} = C - A = (2,-1,1) - (0,0,0) = (2,-1,1) A C = C β A = ( 2 , β 1 , 1 ) β ( 0 , 0 , 0 ) = ( 2 , β 1 , 1 )
Step 2: Find the cross product A B β Γ A C β \overrightarrow{AB} \times \overrightarrow{AC} A B Γ A C
Using the determinant formula for the cross product:
A B β Γ A C β = β£ i ^ j ^ k ^ 1 2 32 β 1 1 β£ \overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
1 & 2 & 3
2 & -1 & 1
\end{array} \right| A B Γ A C = β i ^ β j ^ β β k ^ 1 β 2 β 32 β β 1 β 1 β β
Expanding the determinant:
= i ^ ( 2 + 3 ) β j ^ ( 1 β 6 ) + k ^ ( β 1 β 4 ) = \hat{i}(2+3) - \hat{j}(1-6) + \hat{k}(-1-4) = i ^ ( 2 + 3 ) β j ^ β ( 1 β 6 ) + k ^ ( β 1 β 4 )
= 5 i ^ + 5 j ^ β 5 k ^ = 5 \hat{i} + 5 \hat{j} - 5 \hat{k} = 5 i ^ + 5 j ^ β β 5 k ^
Step 3: Calculate the magnitude of the cross product
β£ A B β Γ A C β β£ = ( 5 ) 2 + ( 5 ) 2 + ( β 5 ) 2 |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(5)^2 + (5)^2 + (-5)^2} β£ A B Γ A C β£ = ( 5 ) 2 + ( 5 ) 2 + ( β 5 ) 2 β
= 25 + 25 + 25 = 75 = 5 3 = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3} = 25 + 25 + 25 β = 75 β = 5 3 β
Step 4: Calculate the area
Area = 5 3 , squareΒ units \text{Area} = 5\sqrt{3} , \text{square units} Area = 5 3 β , squareΒ units
Part (ii)
We are given the points A ( 1 , 2 , β 1 ) A(1,2,-1) A ( 1 , 2 , β 1 ) , B ( 4 , 2 , β 3 ) B(4,2,-3) B ( 4 , 2 , β 3 ) , C ( 6 , β 5 , 2 ) C(6,-5,2) C ( 6 , β 5 , 2 ) , and D ( 9 , β 5 , 0 ) D(9,-5,0) D ( 9 , β 5 , 0 ) . We find that A B β = C D β \overrightarrow{AB} = \overrightarrow{CD} A B = C D , so A B C D ABCD A BC D is a parallelogram.
Step 1: Calculate the vectors A B β \overrightarrow{AB} A B and A C β \overrightarrow{AC} A C
A B β = B β A = ( 4 , 2 , β 3 ) β ( 1 , 2 , β 1 ) = ( 3 , 0 , β 2 ) \overrightarrow{AB} = B - A = (4,2,-3) - (1,2,-1) = (3,0,-2) A B = B β A = ( 4 , 2 , β 3 ) β ( 1 , 2 , β 1 ) = ( 3 , 0 , β 2 )
A C β = C β A = ( 6 , β 5 , 2 ) β ( 1 , 2 , β 1 ) = ( 5 , β 7 , 3 ) \overrightarrow{AC} = C - A = (6,-5,2) - (1,2,-1) = (5,-7,3) A C = C β A = ( 6 , β 5 , 2 ) β ( 1 , 2 , β 1 ) = ( 5 , β 7 , 3 )
Step 2: Find the cross product A B β Γ A C β \overrightarrow{AB} \times \overrightarrow{AC} A B Γ A C
Using the determinant formula for the cross product:
A B β Γ A C β = β£ i ^ j ^ k ^ 3 0 β 25 β 7 3 β£ \overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
3 & 0 & -2
5 & -7 & 3
\end{array} \right| A B Γ A C = β i ^ β j ^ β β k ^ 3 β 0 β β 25 β β 7 β 3 β β
Expanding the determinant:
= i ^ ( 0 β ( β 14 ) ) β j ^ ( 9 + 10 ) + k ^ ( β 21 β 0 ) = \hat{i}(0 - (-14)) - \hat{j}(9 + 10) + \hat{k}(-21 - 0) = i ^ ( 0 β ( β 14 )) β j ^ β ( 9 + 10 ) + k ^ ( β 21 β 0 )
= β 14 i ^ β 19 j ^ β 21 k ^ = -14 \hat{i} - 19 \hat{j} - 21 \hat{k} = β 14 i ^ β 19 j ^ β β 21 k ^
Step 3: Calculate the magnitude of the cross product
β£ A B β Γ A C β β£ = ( β 14 ) 2 + ( β 19 ) 2 + ( β 21 ) 2 |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-14)^2 + (-19)^2 + (-21)^2} β£ A B Γ A C β£ = ( β 14 ) 2 + ( β 19 ) 2 + ( β 21 ) 2 β
= 196 + 361 + 441 = 998 = \sqrt{196 + 361 + 441} = \sqrt{998} = 196 + 361 + 441 β = 998 β
Step 4: Calculate the area
Area = 998 , squareΒ units \text{Area} = \sqrt{998} , \text{square units} Area = 998 β , squareΒ units
Part (iii)
We are given the points A ( β 1 , 1 , 1 ) A(-1,1,1) A ( β 1 , 1 , 1 ) , B ( β 1 , 2 , 2 ) B(-1,2,2) B ( β 1 , 2 , 2 ) , C ( β 3 , 4 , β 5 ) C(-3,4,-5) C ( β 3 , 4 , β 5 ) , and D ( β 3 , 5 , β 4 ) D(-3,5,-4) D ( β 3 , 5 , β 4 ) . We find that A B β = C D β \overrightarrow{AB} = \overrightarrow{CD} A B = C D , so A B C D ABCD A BC D is a parallelogram.
Step 1: Calculate the vectors A B β \overrightarrow{AB} A B and A C β \overrightarrow{AC} A C
A B β = B β A = ( β 1 , 2 , 2 ) β ( β 1 , 1 , 1 ) = ( 0 , 1 , 1 ) \overrightarrow{AB} = B - A = (-1,2,2) - (-1,1,1) = (0,1,1) A B = B β A = ( β 1 , 2 , 2 ) β ( β 1 , 1 , 1 ) = ( 0 , 1 , 1 )
A C β = C β A = ( β 3 , 4 , β 5 ) β ( β 1 , 1 , 1 ) = ( β 2 , 3 , β 6 ) \overrightarrow{AC} = C - A = (-3,4,-5) - (-1,1,1) = (-2,3,-6) A C = C β A = ( β 3 , 4 , β 5 ) β ( β 1 , 1 , 1 ) = ( β 2 , 3 , β 6 )
Step 2: Find the cross product A B β Γ A C β \overrightarrow{AB} \times \overrightarrow{AC} A B Γ A C
Using the determinant formula for the cross product:
A B β Γ A C β = β£ i ^ j ^ k ^ 0 1 1 β 2 3 β 6 β£ \overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
0 & 1 & 1
-2 & 3 & -6
\end{array} \right| A B Γ A C = β i ^ β j ^ β β k ^ 0 β 1 β 1 β 2 β 3 β β 6 β β
Expanding the determinant:
= i ^ ( β 6 β 3 ) β j ^ ( 0 + 2 ) + k ^ ( 0 + 2 ) = \hat{i}(-6 - 3) - \hat{j}(0 + 2) + \hat{k}(0 + 2) = i ^ ( β 6 β 3 ) β j ^ β ( 0 + 2 ) + k ^ ( 0 + 2 )
= β 9 i ^ β 2 j ^ + 2 k ^ = -9 \hat{i} - 2 \hat{j} + 2 \hat{k} = β 9 i ^ β 2 j ^ β + 2 k ^
Step 3: Calculate the magnitude of the cross product
β£ A B β Γ A C β β£ = ( β 9 ) 2 + ( β 2 ) 2 + ( 2 ) 2 |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-9)^2 + (-2)^2 + (2)^2} β£ A B Γ A C β£ = ( β 9 ) 2 + ( β 2 ) 2 + ( 2 ) 2 β
= 81 + 4 + 4 = 89 = \sqrt{81 + 4 + 4} = \sqrt{89} = 81 + 4 + 4 β = 89 β
Step 4: Calculate the area
Area = 89 , squareΒ units \text{Area} = \sqrt{89} , \text{square units} Area = 89 β , squareΒ units
A β Γ B β = β£ i ^ j ^ k ^ A x A y A z B x B y B z β£ \overrightarrow{A} \times \overrightarrow{B} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
A_x & A_y & A_z
B_x & B_y & B_z
\end{array} \right| A Γ B = β i ^ β j ^ β β k ^ A x β β A y β β A z β B x β β B y β β B z β β β
Area = β£ A B β Γ A C β β£ \text{Area} = |\overrightarrow{AB} \times \overrightarrow{AC}| Area = β£ A B Γ A C β£
Summary of Steps
For each part :
Calculate the vectors A B β \overrightarrow{AB} A B and A C β \overrightarrow{AC} A C .
Find the cross product A B β Γ A C β \overrightarrow{AB} \times \overrightarrow{AC} A B Γ A C .
Calculate the magnitude of the cross product.
The magnitude gives the area of the parallelogram.