Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.4 Q-4

Question Statement

Find the area of the parallelogram formed by the vertices AA, BB, CC, and DD.

(i) A(0,0,0),B(1,2,3),C(2,βˆ’1,1),D(3,1,4)A(0,0,0), B(1,2,3), C(2,-1,1), D(3,1,4)

(ii) A(1,2,βˆ’1),B(4,2,βˆ’3),C(6,βˆ’5,2),D(9,βˆ’5,0)A(1,2,-1), B(4,2,-3), C(6,-5,2), D(9,-5,0)

(iii) A(βˆ’1,1,1),B(βˆ’1,2,2),C(βˆ’3,4,βˆ’5),D(βˆ’3,5,βˆ’4)A(-1,1,1), B(-1,2,2), C(-3,4,-5), D(-3,5,-4)


Background and Explanation

To find the area of a parallelogram in 3D space, we use the following formula:

AreaΒ ofΒ parallelogram=∣ABβ†’Γ—ACβ†’βˆ£\text{Area of parallelogram} = |\overrightarrow{AB} \times \overrightarrow{AC}|

Where:

  • ABβ†’\overrightarrow{AB} and ACβ†’\overrightarrow{AC} are vectors from point AA to points BB and CC, respectively.
  • The cross product ABβ†’Γ—ACβ†’\overrightarrow{AB} \times \overrightarrow{AC} gives a vector perpendicular to the parallelogram’s plane, and its magnitude represents the area of the parallelogram.

Solution

Part (i)

We are given the points A(0,0,0)A(0,0,0), B(1,2,3)B(1,2,3), C(2,βˆ’1,1)C(2,-1,1), and D(3,1,4)D(3,1,4). First, we check which sides are parallel. We find that ABβ†’=CDβ†’\overrightarrow{AB} = \overrightarrow{CD}, so ABCDABCD is a parallelogram.

Step 1: Calculate the vectors AB→\overrightarrow{AB} and AC→\overrightarrow{AC}

ABβ†’=Bβˆ’A=(1,2,3)βˆ’(0,0,0)=(1,2,3)\overrightarrow{AB} = B - A = (1,2,3) - (0,0,0) = (1,2,3) ACβ†’=Cβˆ’A=(2,βˆ’1,1)βˆ’(0,0,0)=(2,βˆ’1,1)\overrightarrow{AC} = C - A = (2,-1,1) - (0,0,0) = (2,-1,1)

Step 2: Find the cross product AB→×AC→\overrightarrow{AB} \times \overrightarrow{AC}

Using the determinant formula for the cross product:

ABβ†’Γ—ACβ†’=∣i^j^k^1232βˆ’11∣\overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 1 & 2 & 3 2 & -1 & 1 \end{array} \right|

Expanding the determinant:

=i^(2+3)βˆ’j^(1βˆ’6)+k^(βˆ’1βˆ’4)= \hat{i}(2+3) - \hat{j}(1-6) + \hat{k}(-1-4) =5i^+5j^βˆ’5k^= 5 \hat{i} + 5 \hat{j} - 5 \hat{k}

Step 3: Calculate the magnitude of the cross product

∣ABβ†’Γ—ACβ†’βˆ£=(5)2+(5)2+(βˆ’5)2|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(5)^2 + (5)^2 + (-5)^2} =25+25+25=75=53= \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3}

Step 4: Calculate the area

Area=53,squareΒ units\text{Area} = 5\sqrt{3} , \text{square units}

Part (ii)

We are given the points A(1,2,βˆ’1)A(1,2,-1), B(4,2,βˆ’3)B(4,2,-3), C(6,βˆ’5,2)C(6,-5,2), and D(9,βˆ’5,0)D(9,-5,0). We find that ABβ†’=CDβ†’\overrightarrow{AB} = \overrightarrow{CD}, so ABCDABCD is a parallelogram.

Step 1: Calculate the vectors AB→\overrightarrow{AB} and AC→\overrightarrow{AC}

ABβ†’=Bβˆ’A=(4,2,βˆ’3)βˆ’(1,2,βˆ’1)=(3,0,βˆ’2)\overrightarrow{AB} = B - A = (4,2,-3) - (1,2,-1) = (3,0,-2) ACβ†’=Cβˆ’A=(6,βˆ’5,2)βˆ’(1,2,βˆ’1)=(5,βˆ’7,3)\overrightarrow{AC} = C - A = (6,-5,2) - (1,2,-1) = (5,-7,3)

Step 2: Find the cross product AB→×AC→\overrightarrow{AB} \times \overrightarrow{AC}

Using the determinant formula for the cross product:

ABβ†’Γ—ACβ†’=∣i^j^k^30βˆ’25βˆ’73∣\overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 3 & 0 & -2 5 & -7 & 3 \end{array} \right|

Expanding the determinant:

=i^(0βˆ’(βˆ’14))βˆ’j^(9+10)+k^(βˆ’21βˆ’0)= \hat{i}(0 - (-14)) - \hat{j}(9 + 10) + \hat{k}(-21 - 0) =βˆ’14i^βˆ’19j^βˆ’21k^= -14 \hat{i} - 19 \hat{j} - 21 \hat{k}

Step 3: Calculate the magnitude of the cross product

∣ABβ†’Γ—ACβ†’βˆ£=(βˆ’14)2+(βˆ’19)2+(βˆ’21)2|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-14)^2 + (-19)^2 + (-21)^2} =196+361+441=998= \sqrt{196 + 361 + 441} = \sqrt{998}

Step 4: Calculate the area

Area=998,squareΒ units\text{Area} = \sqrt{998} , \text{square units}

Part (iii)

We are given the points A(βˆ’1,1,1)A(-1,1,1), B(βˆ’1,2,2)B(-1,2,2), C(βˆ’3,4,βˆ’5)C(-3,4,-5), and D(βˆ’3,5,βˆ’4)D(-3,5,-4). We find that ABβ†’=CDβ†’\overrightarrow{AB} = \overrightarrow{CD}, so ABCDABCD is a parallelogram.

Step 1: Calculate the vectors AB→\overrightarrow{AB} and AC→\overrightarrow{AC}

ABβ†’=Bβˆ’A=(βˆ’1,2,2)βˆ’(βˆ’1,1,1)=(0,1,1)\overrightarrow{AB} = B - A = (-1,2,2) - (-1,1,1) = (0,1,1) ACβ†’=Cβˆ’A=(βˆ’3,4,βˆ’5)βˆ’(βˆ’1,1,1)=(βˆ’2,3,βˆ’6)\overrightarrow{AC} = C - A = (-3,4,-5) - (-1,1,1) = (-2,3,-6)

Step 2: Find the cross product AB→×AC→\overrightarrow{AB} \times \overrightarrow{AC}

Using the determinant formula for the cross product:

ABβ†’Γ—ACβ†’=∣i^j^k^011βˆ’23βˆ’6∣\overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 0 & 1 & 1 -2 & 3 & -6 \end{array} \right|

Expanding the determinant:

=i^(βˆ’6βˆ’3)βˆ’j^(0+2)+k^(0+2)= \hat{i}(-6 - 3) - \hat{j}(0 + 2) + \hat{k}(0 + 2) =βˆ’9i^βˆ’2j^+2k^= -9 \hat{i} - 2 \hat{j} + 2 \hat{k}

Step 3: Calculate the magnitude of the cross product

∣ABβ†’Γ—ACβ†’βˆ£=(βˆ’9)2+(βˆ’2)2+(2)2|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-9)^2 + (-2)^2 + (2)^2} =81+4+4=89= \sqrt{81 + 4 + 4} = \sqrt{89}

Step 4: Calculate the area

Area=89,squareΒ units\text{Area} = \sqrt{89} , \text{square units}

Key Formulas or Methods Used

  • Cross Product Formula:
Aβ†’Γ—Bβ†’=∣i^j^k^AxAyAzBxByBz∣\overrightarrow{A} \times \overrightarrow{B} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} A_x & A_y & A_z B_x & B_y & B_z \end{array} \right|
  • Area of Parallelogram:
Area=∣ABβ†’Γ—ACβ†’βˆ£\text{Area} = |\overrightarrow{AB} \times \overrightarrow{AC}|

Summary of Steps

  1. For each part:
    • Calculate the vectors ABβ†’\overrightarrow{AB} and ACβ†’\overrightarrow{AC}.
    • Find the cross product ABβ†’Γ—ACβ†’\overrightarrow{AB} \times \overrightarrow{AC}.
    • Calculate the magnitude of the cross product.
    • The magnitude gives the area of the parallelogram.