Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.4 Q-5

Question Statement

Determine which vectors, if any, are perpendicular or parallel in the following cases:

(i)

Uβ€Ύ=5iβ€Ύβˆ’jβ€Ύ+kβ€Ύ,Vβ€Ύ=jβ€Ύβˆ’5kβ€Ύ,Wβ€Ύ=βˆ’15iβ€Ύ+3jβ€Ύβˆ’3kβ€Ύ\underline{\mathbf{U}} = 5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = \underline{\mathbf{j}} - 5 \underline{\mathbf{k}}, \quad \underline{\mathbf{W}} = -15 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}}

(ii)

Uβ€Ύ=iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ,Vβ€Ύ=βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ,Wβ€Ύ=βˆ’Ο€2iβ€Ύβˆ’Ο€jβ€Ύ+Ο€2kβ€Ύ\underline{\mathbf{U}} = \underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}, \quad \underline{\mathbf{V}} = - \underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}, \quad \underline{\mathbf{W}} = -\frac{\pi}{2} \underline{\mathbf{i}} - \pi \underline{\mathbf{j}} + \frac{\pi}{2} \underline{\mathbf{k}}

Background and Explanation

In vector analysis, two vectors are considered perpendicular if their dot product is zero, i.e.,

Aβ€Ύβ‹…Bβ€Ύ=0\underline{\mathbf{A}} \cdot \underline{\mathbf{B}} = 0

Two vectors are parallel if one is a scalar multiple of the other. To determine if two vectors are perpendicular or parallel, we can use these conditions and calculate the dot products as shown below.


Solution

(i) First set of vectors:

Step 1: Check if Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are perpendicular

We calculate the dot product between Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}}:

Uβ€Ύβ‹…Vβ€Ύ=(5iβ€Ύβˆ’jβ€Ύ+kβ€Ύ)β‹…(jβ€Ύβˆ’5kβ€Ύ)\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}) \cdot (\underline{\mathbf{j}} - 5 \underline{\mathbf{k}})

Expanding the terms:

=5β‹…0+(βˆ’1)β‹…1+1β‹…(βˆ’5)=0βˆ’1βˆ’5=βˆ’6= 5 \cdot 0 + (-1) \cdot 1 + 1 \cdot (-5) = 0 - 1 - 5 = -6

Since the dot product is not zero (βˆ’6β‰ 0-6 \neq 0), Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are not perpendicular.

Step 2: Check if Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular

Now, calculate the dot product between Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}}:

Uβ€Ύβ‹…Wβ€Ύ=(5iβ€Ύβˆ’jβ€Ύ+kβ€Ύ)β‹…(βˆ’15iβ€Ύ+3jβ€Ύβˆ’3kβ€Ύ)\underline{\mathbf{U}} \cdot \underline{\mathbf{W}} = (5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}) \cdot (-15 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}})

Expanding the terms:

=5β‹…(βˆ’15)+(βˆ’1)β‹…3+1β‹…(βˆ’3)=βˆ’75βˆ’3βˆ’3=βˆ’81= 5 \cdot (-15) + (-1) \cdot 3 + 1 \cdot (-3) = -75 - 3 - 3 = -81

Since the dot product is not zero (βˆ’81β‰ 0-81 \neq 0), Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.

Step 3: Check if Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular

Next, we calculate the dot product between Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}}:

Vβ€Ύβ‹…Wβ€Ύ=(jβ€Ύβˆ’5kβ€Ύ)β‹…(βˆ’15iβ€Ύ+3jβ€Ύβˆ’3kβ€Ύ)\underline{\mathbf{V}} \cdot \underline{\mathbf{W}} = (\underline{\mathbf{j}} - 5 \underline{\mathbf{k}}) \cdot (-15 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}})

Expanding the terms:

=0β‹…(βˆ’15)+1β‹…3+(βˆ’5)β‹…(βˆ’3)=0+3+15=18= 0 \cdot (-15) + 1 \cdot 3 + (-5) \cdot (-3) = 0 + 3 + 15 = 18

Since the dot product is not zero (18β‰ 018 \neq 0), Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.

Step 4: Check if Wβ€Ύ\underline{\mathbf{W}} is parallel to Uβ€Ύ\underline{\mathbf{U}}

We notice that:

Wβ€Ύ=βˆ’15iβ€Ύ+3jβ€Ύβˆ’3kβ€Ύ=βˆ’3(5iβ€Ύβˆ’jβ€Ύ+kβ€Ύ)=βˆ’3Uβ€Ύ\underline{\mathbf{W}} = -15 \underline{\mathbf{i}} + 3 \underline{\mathbf{j}} - 3 \underline{\mathbf{k}} = -3(5 \underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}) = -3 \underline{\mathbf{U}}

Thus, Wβ€Ύβˆ£Uβ€Ύ\underline{\mathbf{W}} | \underline{\mathbf{U}}, meaning Wβ€Ύ\underline{\mathbf{W}} and Uβ€Ύ\underline{\mathbf{U}} are parallel.


(ii) Second set of vectors:

Step 1: Check if Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are perpendicular

We calculate the dot product between Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}}:

Uβ€Ύβ‹…Vβ€Ύ=(iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ)β‹…(βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ)\underline{\mathbf{U}} \cdot \underline{\mathbf{V}} = (\underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}) \cdot (-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}})

Expanding the terms:

=1β‹…(βˆ’1)+2β‹…1+(βˆ’1)β‹…1=βˆ’1+2βˆ’1=0= 1 \cdot (-1) + 2 \cdot 1 + (-1) \cdot 1 = -1 + 2 - 1 = 0

Since the dot product is zero, Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are perpendicular.

Step 2: Check if Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular

Next, we calculate the dot product between Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}}:

Uβ€Ύβ‹…Wβ€Ύ=(iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ)β‹…(βˆ’Ο€2iβ€Ύβˆ’Ο€jβ€Ύ+Ο€2kβ€Ύ)\underline{\mathbf{U}} \cdot \underline{\mathbf{W}} = (\underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}) \cdot \left(-\frac{\pi}{2} \underline{\mathbf{i}} - \pi \underline{\mathbf{j}} + \frac{\pi}{2} \underline{\mathbf{k}}\right)

Expanding the terms:

=1β‹…(βˆ’Ο€2)+2β‹…(βˆ’Ο€)+(βˆ’1)β‹…Ο€2=βˆ’Ο€2βˆ’2Ο€βˆ’Ο€2=βˆ’3Ο€= 1 \cdot \left(-\frac{\pi}{2}\right) + 2 \cdot (-\pi) + (-1) \cdot \frac{\pi}{2} = -\frac{\pi}{2} - 2\pi - \frac{\pi}{2} = -3\pi

Since the dot product is not zero (βˆ’3Ο€β‰ 0-3\pi \neq 0), Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.

Step 3: Check if Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular

We calculate the dot product between Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}}:

Vβ€Ύβ‹…Wβ€Ύ=(βˆ’iβ€Ύ+jβ€Ύ+kβ€Ύ)β‹…(βˆ’Ο€2iβ€Ύβˆ’Ο€jβ€Ύ+Ο€2kβ€Ύ)\underline{\mathbf{V}} \cdot \underline{\mathbf{W}} = (-\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}) \cdot \left(-\frac{\pi}{2} \underline{\mathbf{i}} - \pi \underline{\mathbf{j}} + \frac{\pi}{2} \underline{\mathbf{k}}\right)

Expanding the terms:

=βˆ’1β‹…(βˆ’Ο€2)+1β‹…(βˆ’Ο€)+1β‹…Ο€2=Ο€2βˆ’Ο€+Ο€2=0= -1 \cdot \left(-\frac{\pi}{2}\right) + 1 \cdot (-\pi) + 1 \cdot \frac{\pi}{2} = \frac{\pi}{2} - \pi + \frac{\pi}{2} = 0

Since the dot product is zero, Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular.

Step 4: Check if Wβ€Ύ\underline{\mathbf{W}} is parallel to Uβ€Ύ\underline{\mathbf{U}}

We observe that:

Wβ€Ύ=βˆ’Ο€2iβ€Ύβˆ’Ο€jβ€Ύ+Ο€2kβ€Ύ=Ο€2(iβ€Ύ+2jβ€Ύβˆ’kβ€Ύ)=Ο€2Uβ€Ύ\underline{\mathbf{W}} = -\frac{\pi}{2} \underline{\mathbf{i}} - \pi \underline{\mathbf{j}} + \frac{\pi}{2} \underline{\mathbf{k}} = \frac{\pi}{2} (\underline{\mathbf{i}} + 2 \underline{\mathbf{j}} - \underline{\mathbf{k}}) = \frac{\pi}{2} \underline{\mathbf{U}}

Thus, Wβ€Ύβˆ£Uβ€Ύ\underline{\mathbf{W}} | \underline{\mathbf{U}}, meaning Wβ€Ύ\underline{\mathbf{W}} and Uβ€Ύ\underline{\mathbf{U}} are parallel.


Key Formulas or Methods Used

  • Dot Product: To determine perpendicularity, use the formula:
Aβ€Ύβ‹…Bβ€Ύ=AxBx+AyBy+AzBz \underline{\mathbf{A}} \cdot \underline{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z

If Aβ€Ύβ‹…Bβ€Ύ=0\underline{\mathbf{A}} \cdot \underline{\mathbf{B}} = 0, then the vectors are perpendicular.

  • Parallel Vectors: Vectors Aβ€Ύ\underline{\mathbf{A}} and Bβ€Ύ\underline{\mathbf{B}} are parallel if:
Aβ€Ύ=kBβ€ΎforΒ someΒ scalarΒ k \underline{\mathbf{A}} = k \underline{\mathbf{B}} \quad \text{for some scalar } k

Summary of Steps

  1. For case (i):
    • Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are not perpendicular.
    • Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.
    • Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.
    • Wβ€Ύ\underline{\mathbf{W}} is parallel to Uβ€Ύ\underline{\mathbf{U}}.
  2. For case (ii):
    • Uβ€Ύ\underline{\mathbf{U}} and Vβ€Ύ\underline{\mathbf{V}} are perpendicular.
    • Uβ€Ύ\underline{\mathbf{U}} and Wβ€Ύ\underline{\mathbf{W}} are not perpendicular.
    • Vβ€Ύ\underline{\mathbf{V}} and Wβ€Ύ\underline{\mathbf{W}} are perpendicular.
    • Wβ€Ύ\underline{\mathbf{W}} is parallel to Uβ€Ύ\underline{\mathbf{U}}.