Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-11

Question Statement

A force Fβ€Ύ=3i^+2j^βˆ’4k^\underline{F} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} is applied at the point P(1,βˆ’1,2)P(1, -1, 2). Find the moment of force about the point A(2,βˆ’1,3)A(2, -1, 3).


Background and Explanation

The moment of a force about a point (also called the torque) is a vector quantity that describes the rotational effect of a force about that point. It is calculated using the cross product of the position vector AP⃗→\overrightarrow{A \vec{P}} (from the point where the moment is being calculated to the point where the force is applied) and the force vector F→\overrightarrow{F}.

The formula for the moment is:

M→=AP⃗→×F→\overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{F}

Where:

  • APβƒ—β†’\overrightarrow{A \vec{P}} is the displacement vector from point AA to point PP,
  • Fβ†’\overrightarrow{F} is the force vector,
  • The cross product Γ—\times gives the moment (torque) vector.

Solution

Step 1: Define the given vectors

We are given:

  • The force vector Fβ†’=3i^+2j^βˆ’4k^\overrightarrow{F} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k},
  • Point P(1,βˆ’1,2)P(1, -1, 2) where the force is applied,
  • Point A(2,βˆ’1,3)A(2, -1, 3) where the moment is to be calculated.

Step 2: Calculate the displacement vector AP⃗→\overrightarrow{A \vec{P}}

The displacement vector APβƒ—β†’\overrightarrow{A \vec{P}} is found by subtracting the coordinates of point A(2,βˆ’1,3)A(2, -1, 3) from point P(1,βˆ’1,2)P(1, -1, 2):

APβƒ—β†’=Pβˆ’A=(1,βˆ’1,2)βˆ’(2,βˆ’1,3)\overrightarrow{A \vec{P}} = P - A = (1, -1, 2) - (2, -1, 3) APβƒ—β†’=(1βˆ’2,βˆ’1+1,2βˆ’3)=(βˆ’1,0,βˆ’1)\overrightarrow{A \vec{P}} = (1 - 2, -1 + 1, 2 - 3) = (-1, 0, -1)

Thus, the displacement vector is:

APβƒ—β†’=βˆ’i^+0j^βˆ’k^\overrightarrow{A \vec{P}} = -\hat{i} + 0 \hat{j} - \hat{k}

Step 3: Compute the cross product AP⃗→×F→\overrightarrow{A \vec{P}} \times \overrightarrow{F}

The moment is calculated by the cross product of AP⃗→\overrightarrow{A \vec{P}} and F→\overrightarrow{F}:

APβƒ—β†’Γ—Fβ†’=∣i^j^k^βˆ’10βˆ’132βˆ’4∣\overrightarrow{A \vec{P}} \times \overrightarrow{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} -1 & 0 & -1 3 & 2 & -4 \end{array} \right|

Now, expand the determinant:

APβƒ—β†’Γ—Fβ†’=i^((0)(βˆ’4)βˆ’(βˆ’1)(2))βˆ’j^((βˆ’1)(βˆ’4)βˆ’(βˆ’1)(3))+k^((βˆ’1)(2)βˆ’(0)(3))\overrightarrow{A \vec{P}} \times \overrightarrow{F} = \hat{i} \left( (0)(-4) - (-1)(2) \right) - \hat{j} \left( (-1)(-4) - (-1)(3) \right) + \hat{k} \left( (-1)(2) - (0)(3) \right)

Simplifying each term:

=i^(0+2)βˆ’j^(4+3)+k^(βˆ’2+0)= \hat{i} (0 + 2) - \hat{j} (4 + 3) + \hat{k} (-2 + 0) =2i^βˆ’7j^βˆ’2k^= 2 \hat{i} - 7 \hat{j} - 2 \hat{k}

Thus, the moment of the force is:

Mβ†’=2i^βˆ’7j^βˆ’2k^\overrightarrow{M} = 2 \hat{i} - 7 \hat{j} - 2 \hat{k}

Key Formulas or Methods Used

  • Moment of Force (Torque):
M→=AP⃗→×F→ \overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{F}

The moment (or torque) is the cross product of the displacement vector and the force vector.

  • Cross Product: The cross product of two vectors Aβƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} and Bβƒ—=Bxi^+Byj^+Bzk^\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} is calculated as:
Aβƒ—Γ—Bβƒ—=(AyBzβˆ’AzBy)i^βˆ’(AxBzβˆ’AzBx)j^+(AxByβˆ’AyBx)k^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k}

Summary of Steps

  1. Calculate the displacement vector AP⃗→\overrightarrow{A \vec{P}} by subtracting the coordinates of point AA from point PP.
  2. Compute the cross product AP⃗→×F→\overrightarrow{A \vec{P}} \times \overrightarrow{F} to find the moment of the force.
  3. Simplify the cross product to obtain the moment vector Mβ†’=2i^βˆ’7j^βˆ’2k^\overrightarrow{M} = 2 \hat{i} - 7 \hat{j} - 2 \hat{k}.