Question Statement
A force F βΎ = 4 i ^ β 3 k ^ \underline{F} = 4 \hat{i} - 3 \hat{k} F β = 4 i ^ β 3 k ^ passes through the point A ( 2 , β 2 , 5 ) A(2, -2, 5) A ( 2 , β 2 , 5 ) . Find the moment of force about the point B ( 1 , β 3 , 1 ) B(1, -3, 1) B ( 1 , β 3 , 1 ) .
Background and Explanation
The moment of a force (or torque) about a point is a vector quantity that measures the rotational effect of the force relative to that point. It is calculated using the cross product of the position vector B A β β \overrightarrow{B \vec{A}} B A (from the point where the moment is to be calculated to the point where the force is applied) and the force vector F β \overrightarrow{F} F .
The formula for the moment is:
M β = B A β β Γ F β \overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F} M = B A Γ F
Where:
B A β β \overrightarrow{B \vec{A}} B A is the displacement vector from point B B B to point A A A ,
F β \overrightarrow{F} F is the force vector,
The cross product Γ \times Γ gives the moment vector.
Solution
Step 1: Define the given vectors
We are given:
The force vector F β = 4 i ^ + 0 j ^ β 3 k ^ \overrightarrow{F} = 4 \hat{i} + 0 \hat{j} - 3 \hat{k} F = 4 i ^ + 0 j ^ β β 3 k ^ ,
Point A ( 2 , β 2 , 5 ) A(2, -2, 5) A ( 2 , β 2 , 5 ) where the force passes through,
Point B ( 1 , β 3 , 1 ) B(1, -3, 1) B ( 1 , β 3 , 1 ) where we need to calculate the moment.
Step 2: Calculate the displacement vector B A β β \overrightarrow{B \vec{A}} B A
The displacement vector B A β β \overrightarrow{B \vec{A}} B A is found by subtracting the coordinates of point B ( 1 , β 3 , 1 ) B(1, -3, 1) B ( 1 , β 3 , 1 ) from point A ( 2 , β 2 , 5 ) A(2, -2, 5) A ( 2 , β 2 , 5 ) :
B A β β = A β B = ( 2 , β 2 , 5 ) β ( 1 , β 3 , 1 ) \overrightarrow{B \vec{A}} = A - B = (2, -2, 5) - (1, -3, 1) B A = A β B = ( 2 , β 2 , 5 ) β ( 1 , β 3 , 1 )
B A β β = ( 2 β 1 , β 2 + 3 , 5 β 1 ) = ( 1 , 1 , 4 ) \overrightarrow{B \vec{A}} = (2 - 1, -2 + 3, 5 - 1) = (1, 1, 4) B A = ( 2 β 1 , β 2 + 3 , 5 β 1 ) = ( 1 , 1 , 4 )
Thus, the displacement vector is:
B A β β = i ^ + j ^ + 4 k ^ \overrightarrow{B \vec{A}} = \hat{i} + \hat{j} + 4 \hat{k} B A = i ^ + j ^ β + 4 k ^
Step 3: Compute the cross product B A β β Γ F β \overrightarrow{B \vec{A}} \times \overrightarrow{F} B A Γ F
The moment is calculated by the cross product of B A β β \overrightarrow{B \vec{A}} B A and F β \overrightarrow{F} F :
B A β β Γ F β = β£ i ^ j ^ k ^ 1 1 44 0 β 3 β£ \overrightarrow{B \vec{A}} \times \overrightarrow{F} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
1 & 1 & 4
4 & 0 & -3
\end{array} \right| B A Γ F = β i ^ β j ^ β β k ^ 1 β 1 β 44 β 0 β β 3 β β
Now, expand the determinant:
B A β β Γ F β = i ^ ( ( 1 ) ( β 3 ) β ( 4 ) ( 0 ) ) β j ^ ( ( 1 ) ( β 3 ) β ( 4 ) ( 4 ) ) + k ^ ( ( 1 ) ( 0 ) β ( 1 ) ( 4 ) ) \overrightarrow{B \vec{A}} \times \overrightarrow{F} = \hat{i} \left( (1)(-3) - (4)(0) \right) - \hat{j} \left( (1)(-3) - (4)(4) \right) + \hat{k} \left( (1)(0) - (1)(4) \right) B A Γ F = i ^ ( ( 1 ) ( β 3 ) β ( 4 ) ( 0 ) ) β j ^ β ( ( 1 ) ( β 3 ) β ( 4 ) ( 4 ) ) + k ^ ( ( 1 ) ( 0 ) β ( 1 ) ( 4 ) )
Simplifying each term:
= i ^ ( β 3 ) β j ^ ( β 3 β 16 ) + k ^ ( 0 β 4 ) = \hat{i} (-3) - \hat{j} (-3 - 16) + \hat{k} (0 - 4) = i ^ ( β 3 ) β j ^ β ( β 3 β 16 ) + k ^ ( 0 β 4 )
= β 3 i ^ β j ^ ( β 19 ) + ( β 4 ) k ^ = -3 \hat{i} - \hat{j} (-19) + (-4) \hat{k} = β 3 i ^ β j ^ β ( β 19 ) + ( β 4 ) k ^
= β 3 i ^ + 19 j ^ β 4 k ^ = -3 \hat{i} + 19 \hat{j} - 4 \hat{k} = β 3 i ^ + 19 j ^ β β 4 k ^
Thus, the moment of the force is:
M β = β 3 i ^ + 19 j ^ β 4 k ^ \overrightarrow{M} = -3 \hat{i} + 19 \hat{j} - 4 \hat{k} M = β 3 i ^ + 19 j ^ β β 4 k ^
Moment of Force (Torque) :
M β = B A β β Γ F β \overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F} M = B A Γ F
The moment is the cross product of the displacement vector B A β β \overrightarrow{B \vec{A}} B A and the force vector F β \overrightarrow{F} F .
Cross Product :
The cross product of two vectors A β = A x i ^ + A y j ^ + A z k ^ \vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} A = A x β i ^ + A y β j ^ β + A z β k ^ and B β = B x i ^ + B y j ^ + B z k ^ \vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} B = B x β i ^ + B y β j ^ β + B z β k ^ is calculated as:
A β Γ B β = ( A y B z β A z B y ) i ^ β ( A x B z β A z B x ) j ^ + ( A x B y β A y B x ) k ^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k} A Γ B = ( A y β B z β β A z β B y β ) i ^ β ( A x β B z β β A z β B x β ) j ^ β + ( A x β B y β β A y β B x β ) k ^
Summary of Steps
Calculate the displacement vector B A β β \overrightarrow{B \vec{A}} B A by subtracting the coordinates of point B B B from point A A A .
Compute the cross product B A β β Γ F β \overrightarrow{B \vec{A}} \times \overrightarrow{F} B A Γ F to find the moment of the force.
Simplify the cross product to obtain the moment vector M β = β 3 i ^ + 19 j ^ β 4 k ^ \overrightarrow{M} = -3 \hat{i} + 19 \hat{j} - 4 \hat{k} M = β 3 i ^ + 19 j ^ β β 4 k ^ .