Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-12

Question Statement

A force Fβ€Ύ=4i^βˆ’3k^\underline{F} = 4 \hat{i} - 3 \hat{k} passes through the point A(2,βˆ’2,5)A(2, -2, 5). Find the moment of force about the point B(1,βˆ’3,1)B(1, -3, 1).


Background and Explanation

The moment of a force (or torque) about a point is a vector quantity that measures the rotational effect of the force relative to that point. It is calculated using the cross product of the position vector BA⃗→\overrightarrow{B \vec{A}} (from the point where the moment is to be calculated to the point where the force is applied) and the force vector F→\overrightarrow{F}.

The formula for the moment is:

M→=BA⃗→×F→\overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F}

Where:

  • BAβƒ—β†’\overrightarrow{B \vec{A}} is the displacement vector from point BB to point AA,
  • Fβ†’\overrightarrow{F} is the force vector,
  • The cross product Γ—\times gives the moment vector.

Solution

Step 1: Define the given vectors

We are given:

  • The force vector Fβ†’=4i^+0j^βˆ’3k^\overrightarrow{F} = 4 \hat{i} + 0 \hat{j} - 3 \hat{k},
  • Point A(2,βˆ’2,5)A(2, -2, 5) where the force passes through,
  • Point B(1,βˆ’3,1)B(1, -3, 1) where we need to calculate the moment.

Step 2: Calculate the displacement vector BA⃗→\overrightarrow{B \vec{A}}

The displacement vector BAβƒ—β†’\overrightarrow{B \vec{A}} is found by subtracting the coordinates of point B(1,βˆ’3,1)B(1, -3, 1) from point A(2,βˆ’2,5)A(2, -2, 5):

BAβƒ—β†’=Aβˆ’B=(2,βˆ’2,5)βˆ’(1,βˆ’3,1)\overrightarrow{B \vec{A}} = A - B = (2, -2, 5) - (1, -3, 1) BAβƒ—β†’=(2βˆ’1,βˆ’2+3,5βˆ’1)=(1,1,4)\overrightarrow{B \vec{A}} = (2 - 1, -2 + 3, 5 - 1) = (1, 1, 4)

Thus, the displacement vector is:

BA⃗→=i^+j^+4k^\overrightarrow{B \vec{A}} = \hat{i} + \hat{j} + 4 \hat{k}

Step 3: Compute the cross product BA⃗→×F→\overrightarrow{B \vec{A}} \times \overrightarrow{F}

The moment is calculated by the cross product of BA⃗→\overrightarrow{B \vec{A}} and F→\overrightarrow{F}:

BAβƒ—β†’Γ—Fβ†’=∣i^j^k^11440βˆ’3∣\overrightarrow{B \vec{A}} \times \overrightarrow{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 1 & 1 & 4 4 & 0 & -3 \end{array} \right|

Now, expand the determinant:

BAβƒ—β†’Γ—Fβ†’=i^((1)(βˆ’3)βˆ’(4)(0))βˆ’j^((1)(βˆ’3)βˆ’(4)(4))+k^((1)(0)βˆ’(1)(4))\overrightarrow{B \vec{A}} \times \overrightarrow{F} = \hat{i} \left( (1)(-3) - (4)(0) \right) - \hat{j} \left( (1)(-3) - (4)(4) \right) + \hat{k} \left( (1)(0) - (1)(4) \right)

Simplifying each term:

=i^(βˆ’3)βˆ’j^(βˆ’3βˆ’16)+k^(0βˆ’4)= \hat{i} (-3) - \hat{j} (-3 - 16) + \hat{k} (0 - 4) =βˆ’3i^βˆ’j^(βˆ’19)+(βˆ’4)k^= -3 \hat{i} - \hat{j} (-19) + (-4) \hat{k} =βˆ’3i^+19j^βˆ’4k^= -3 \hat{i} + 19 \hat{j} - 4 \hat{k}

Thus, the moment of the force is:

Mβ†’=βˆ’3i^+19j^βˆ’4k^\overrightarrow{M} = -3 \hat{i} + 19 \hat{j} - 4 \hat{k}

Key Formulas or Methods Used

  • Moment of Force (Torque):
M→=BA⃗→×F→ \overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F}

The moment is the cross product of the displacement vector BA⃗→\overrightarrow{B \vec{A}} and the force vector F→\overrightarrow{F}.

  • Cross Product: The cross product of two vectors Aβƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} and Bβƒ—=Bxi^+Byj^+Bzk^\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} is calculated as:
Aβƒ—Γ—Bβƒ—=(AyBzβˆ’AzBy)i^βˆ’(AxBzβˆ’AzBx)j^+(AxByβˆ’AyBx)k^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k}

Summary of Steps

  1. Calculate the displacement vector BA⃗→\overrightarrow{B \vec{A}} by subtracting the coordinates of point BB from point AA.
  2. Compute the cross product BA⃗→×F→\overrightarrow{B \vec{A}} \times \overrightarrow{F} to find the moment of the force.
  3. Simplify the cross product to obtain the moment vector Mβ†’=βˆ’3i^+19j^βˆ’4k^\overrightarrow{M} = -3 \hat{i} + 19 \hat{j} - 4 \hat{k}.