Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-13

Question Statement

A force Fβ€Ύ=2i^+j^βˆ’3k^\underline{F} = 2 \hat{i} + \hat{j} - 3 \hat{k} is applied at point A(1,βˆ’2,1)A(1, -2, 1). Find the moment of the force about the point B(2,0,βˆ’2)B(2, 0, -2).


Background and Explanation

The moment of a force (or torque) about a point is a vector quantity that measures the rotational effect of the force relative to that point. It is computed using the cross product of the position vector BA⃗→\overrightarrow{B \vec{A}} (from the point where the moment is to be calculated to the point where the force is applied) and the force vector F→\overrightarrow{F}.

The formula for the moment is:

M→=BA⃗→×F→\overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F}

Where:

  • BAβƒ—β†’\overrightarrow{B \vec{A}} is the displacement vector from point BB to point AA,
  • Fβ†’\overrightarrow{F} is the force vector,
  • The cross product Γ—\times gives the moment vector.

Solution

Step 1: Define the given vectors

We are given:

  • The force vector Fβ†’=2i^+j^βˆ’3k^\overrightarrow{F} = 2 \hat{i} + \hat{j} - 3 \hat{k},
  • Point A(1,βˆ’2,1)A(1, -2, 1) where the force is applied,
  • Point B(2,0,βˆ’2)B(2, 0, -2) where the moment is to be calculated.

Step 2: Calculate the displacement vector BA⃗→\overrightarrow{B \vec{A}}

The displacement vector BAβƒ—β†’\overrightarrow{B \vec{A}} is found by subtracting the coordinates of point B(2,0,βˆ’2)B(2, 0, -2) from point A(1,βˆ’2,1)A(1, -2, 1):

BAβƒ—β†’=Aβˆ’B=(1,βˆ’2,1)βˆ’(2,0,βˆ’2)\overrightarrow{B \vec{A}} = A - B = (1, -2, 1) - (2, 0, -2) BAβƒ—β†’=(1βˆ’2,βˆ’2βˆ’0,1+2)=(βˆ’1,βˆ’2,3)\overrightarrow{B \vec{A}} = (1 - 2, -2 - 0, 1 + 2) = (-1, -2, 3)

Thus, the displacement vector is:

BAβƒ—β†’=βˆ’i^βˆ’2j^+3k^\overrightarrow{B \vec{A}} = -\hat{i} - 2 \hat{j} + 3 \hat{k}

Step 3: Compute the cross product BA⃗→×F→\overrightarrow{B \vec{A}} \times \overrightarrow{F}

The moment is calculated by the cross product of BA⃗→\overrightarrow{B \vec{A}} and F→\overrightarrow{F}:

BAβƒ—β†’Γ—Fβ†’=∣i^j^k^βˆ’1βˆ’2321βˆ’3∣\overrightarrow{B \vec{A}} \times \overrightarrow{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} -1 & -2 & 3 2 & 1 & -3 \end{array} \right|

Now, expand the determinant:

BAβƒ—β†’Γ—Fβ†’=i^((βˆ’2)(βˆ’3)βˆ’(3)(1))βˆ’j^((βˆ’1)(βˆ’3)βˆ’(3)(2))+k^((βˆ’1)(1)βˆ’(βˆ’2)(2))\overrightarrow{B \vec{A}} \times \overrightarrow{F} = \hat{i} \left( (-2)(-3) - (3)(1) \right) - \hat{j} \left( (-1)(-3) - (3)(2) \right) + \hat{k} \left( (-1)(1) - (-2)(2) \right)

Simplifying each term:

=i^(6βˆ’3)βˆ’j^(3βˆ’6)+k^(βˆ’1+4)= \hat{i} (6 - 3) - \hat{j} (3 - 6) + \hat{k} (-1 + 4) =3i^+3j^+3k^= 3 \hat{i} + 3 \hat{j} + 3 \hat{k}

Thus, the moment of the force is:

Mβ†’=βˆ’3i^+3j^+3k^\overrightarrow{M} = -3 \hat{i} + 3 \hat{j} + 3 \hat{k}

Key Formulas or Methods Used

  • Moment of Force (Torque):
M→=BA⃗→×F→ \overrightarrow{M} = \overrightarrow{B \vec{A}} \times \overrightarrow{F}

The moment is the cross product of the displacement vector BA⃗→\overrightarrow{B \vec{A}} and the force vector F→\overrightarrow{F}.

  • Cross Product: The cross product of two vectors Aβƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} and Bβƒ—=Bxi^+Byj^+Bzk^\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} is calculated as:
Aβƒ—Γ—Bβƒ—=(AyBzβˆ’AzBy)i^βˆ’(AxBzβˆ’AzBx)j^+(AxByβˆ’AyBx)k^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k}

Summary of Steps

  1. Calculate the displacement vector BA⃗→\overrightarrow{B \vec{A}} by subtracting the coordinates of point BB from point AA.
  2. Compute the cross product BA⃗→×F→\overrightarrow{B \vec{A}} \times \overrightarrow{F} to find the moment of the force.
  3. Simplify the cross product to obtain the moment vector Mβ†’=βˆ’3i^+3j^+3k^\overrightarrow{M} = -3 \hat{i} + 3 \hat{j} + 3 \hat{k}.