Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-14

Question Statement

Find the moment about point A(1,1,1)A(1,1,1) of each of the concurrent forces:

  1. F1β€Ύ=i^βˆ’2j^\underline{F_1} = \hat{i} - 2 \hat{j}
  2. F2β€Ύ=3i^+2j^βˆ’k^\underline{F_2} = 3 \hat{i} + 2 \hat{j} - \hat{k}
  3. F3β€Ύ=5j^+2k^\underline{F_3} = 5 \hat{j} + 2 \hat{k}

Where the point of concurrency is P(2,0,1)P(2,0,1).


Background and Explanation

The moment of a force (or torque) about a point is a measure of how much a force will cause an object to rotate about that point. The moment is given by the cross product of the position vector AP⃗→\overrightarrow{A \vec{P}} (from the point of rotation to the point of force application) and the force vector F→\overrightarrow{F}.

For a set of concurrent forces, we can find the total force R→\overrightarrow{R} by adding up all the individual forces. Then, the moment about a point is the cross product of the position vector from the point to the point of concurrency AP⃗→\overrightarrow{A \vec{P}} and the resultant force vector R→\overrightarrow{R}:

M→=AP⃗→×R→\overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R}

Solution

Step 1: Define the given vectors

We are given the following forces:

  • F1β†’=i^βˆ’2j^+0k^\overrightarrow{F_1} = \hat{i} - 2 \hat{j} + 0 \hat{k},
  • F2β†’=3i^+2j^βˆ’k^\overrightarrow{F_2} = 3 \hat{i} + 2 \hat{j} - \hat{k},
  • F3β†’=0i^+5j^+2k^\overrightarrow{F_3} = 0 \hat{i} + 5 \hat{j} + 2 \hat{k}.

The point of concurrency is P(2,0,1)P(2, 0, 1), and the point where we are calculating the moment is A(1,1,1)A(1, 1, 1).

Step 2: Calculate the resultant force R→\overrightarrow{R}

The resultant force is the vector sum of F1β†’\overrightarrow{F_1}, F2β†’\overrightarrow{F_2}, and F3β†’\overrightarrow{F_3}:

R→=F1→+F2→+F3→\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3}

Substituting the values of the forces:

Rβ†’=(i^βˆ’2j^+0k^)+(3i^+2j^βˆ’k^)+(0i^+5j^+2k^)\overrightarrow{R} = (\hat{i} - 2 \hat{j} + 0 \hat{k}) + (3 \hat{i} + 2 \hat{j} - \hat{k}) + (0 \hat{i} + 5 \hat{j} + 2 \hat{k})

Now, add the components:

Rβ†’=(1+3+0)i^+(βˆ’2+2+5)j^+(0βˆ’1+2)k^\overrightarrow{R} = (1 + 3 + 0) \hat{i} + (-2 + 2 + 5) \hat{j} + (0 - 1 + 2) \hat{k} Rβ†’=4i^+5j^+k^\overrightarrow{R} = 4 \hat{i} + 5 \hat{j} + \hat{k}

Thus, the resultant force is:

R→=4i^+5j^+k^\overrightarrow{R} = 4 \hat{i} + 5 \hat{j} + \hat{k}

Step 3: Calculate the position vector AP⃗→\overrightarrow{A \vec{P}}

The displacement vector AP⃗→\overrightarrow{A \vec{P}} is found by subtracting the coordinates of point A(1,1,1)A(1, 1, 1) from the coordinates of point P(2,0,1)P(2, 0, 1):

APβƒ—β†’=Pβˆ’A=(2,0,1)βˆ’(1,1,1)\overrightarrow{A \vec{P}} = P - A = (2, 0, 1) - (1, 1, 1) APβƒ—β†’=(2βˆ’1,0βˆ’1,1βˆ’1)=(1,βˆ’1,0)\overrightarrow{A \vec{P}} = (2 - 1, 0 - 1, 1 - 1) = (1, -1, 0)

Thus, the position vector is:

APβƒ—β†’=i^βˆ’j^\overrightarrow{A \vec{P}} = \hat{i} - \hat{j}

Step 4: Calculate the moment of the resultant force

The moment of the resultant force about point AA is given by the cross product:

M→=AP⃗→×R→\overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R}

Substitute the values of the position vector and the resultant force:

Mβ†’=∣i^j^k^1βˆ’10451∣\overrightarrow{M} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 1 & -1 & 0 4 & 5 & 1 \end{array} \right|

Now, expand the determinant:

Mβ†’=i^((βˆ’1)(1)βˆ’(0)(5))βˆ’j^((1)(1)βˆ’(0)(4))+k^((1)(5)βˆ’(βˆ’1)(4))\overrightarrow{M} = \hat{i} \left( (-1)(1) - (0)(5) \right) - \hat{j} \left( (1)(1) - (0)(4) \right) + \hat{k} \left( (1)(5) - (-1)(4) \right)

Simplifying each term:

=i^(βˆ’1βˆ’0)βˆ’j^(1βˆ’0)+k^(5+4)= \hat{i} (-1 - 0) - \hat{j} (1 - 0) + \hat{k} (5 + 4) =βˆ’i^βˆ’j^+9k^= -\hat{i} - \hat{j} + 9 \hat{k}

Thus, the moment of the resultant force about point AA is:

Mβ†’=βˆ’i^βˆ’j^+9k^\overrightarrow{M} = -\hat{i} - \hat{j} + 9 \hat{k}

Key Formulas or Methods Used

  • Moment of Force (Torque):
M→=AP⃗→×R→ \overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R}

The moment is the cross product of the displacement vector AP⃗→\overrightarrow{A \vec{P}} and the resultant force vector R→\overrightarrow{R}.

  • Cross Product: The cross product of two vectors Aβƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} and Bβƒ—=Bxi^+Byj^+Bzk^\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} is calculated as:
Aβƒ—Γ—Bβƒ—=(AyBzβˆ’AzBy)i^βˆ’(AxBzβˆ’AzBx)j^+(AxByβˆ’AyBx)k^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k}

Summary of Steps

  1. Calculate the resultant force R→\overrightarrow{R} by adding the forces F1→,F2→,F3→\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3}.
  2. Find the displacement vector AP⃗→\overrightarrow{A \vec{P}} by subtracting the coordinates of point AA from point PP.
  3. Compute the moment by taking the cross product of APβƒ—β†’\overrightarrow{A \vec{P}} and Rβ†’\overrightarrow{R}, yielding Mβ†’=βˆ’i^βˆ’j^+9k^\overrightarrow{M} = -\hat{i} - \hat{j} + 9 \hat{k}.