Question Statement
Find the moment about point A ( 1 , 1 , 1 ) A(1,1,1) A ( 1 , 1 , 1 ) of each of the concurrent forces:
F 1 βΎ = i ^ β 2 j ^ \underline{F_1} = \hat{i} - 2 \hat{j} F 1 β β = i ^ β 2 j ^ β
F 2 βΎ = 3 i ^ + 2 j ^ β k ^ \underline{F_2} = 3 \hat{i} + 2 \hat{j} - \hat{k} F 2 β β = 3 i ^ + 2 j ^ β β k ^
F 3 βΎ = 5 j ^ + 2 k ^ \underline{F_3} = 5 \hat{j} + 2 \hat{k} F 3 β β = 5 j ^ β + 2 k ^
Where the point of concurrency is P ( 2 , 0 , 1 ) P(2,0,1) P ( 2 , 0 , 1 ) .
Background and Explanation
The moment of a force (or torque) about a point is a measure of how much a force will cause an object to rotate about that point. The moment is given by the cross product of the position vector A P β β \overrightarrow{A \vec{P}} A P (from the point of rotation to the point of force application) and the force vector F β \overrightarrow{F} F .
For a set of concurrent forces, we can find the total force R β \overrightarrow{R} R by adding up all the individual forces. Then, the moment about a point is the cross product of the position vector from the point to the point of concurrency A P β β \overrightarrow{A \vec{P}} A P and the resultant force vector R β \overrightarrow{R} R :
M β = A P β β Γ R β \overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R} M = A P Γ R
Solution
Step 1: Define the given vectors
We are given the following forces:
F 1 β = i ^ β 2 j ^ + 0 k ^ \overrightarrow{F_1} = \hat{i} - 2 \hat{j} + 0 \hat{k} F 1 β β = i ^ β 2 j ^ β + 0 k ^ ,
F 2 β = 3 i ^ + 2 j ^ β k ^ \overrightarrow{F_2} = 3 \hat{i} + 2 \hat{j} - \hat{k} F 2 β β = 3 i ^ + 2 j ^ β β k ^ ,
F 3 β = 0 i ^ + 5 j ^ + 2 k ^ \overrightarrow{F_3} = 0 \hat{i} + 5 \hat{j} + 2 \hat{k} F 3 β β = 0 i ^ + 5 j ^ β + 2 k ^ .
The point of concurrency is P ( 2 , 0 , 1 ) P(2, 0, 1) P ( 2 , 0 , 1 ) , and the point where we are calculating the moment is A ( 1 , 1 , 1 ) A(1, 1, 1) A ( 1 , 1 , 1 ) .
Step 2: Calculate the resultant force R β \overrightarrow{R} R
The resultant force is the vector sum of F 1 β \overrightarrow{F_1} F 1 β β , F 2 β \overrightarrow{F_2} F 2 β β , and F 3 β \overrightarrow{F_3} F 3 β β :
R β = F 1 β + F 2 β + F 3 β \overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} R = F 1 β β + F 2 β β + F 3 β β
Substituting the values of the forces:
R β = ( i ^ β 2 j ^ + 0 k ^ ) + ( 3 i ^ + 2 j ^ β k ^ ) + ( 0 i ^ + 5 j ^ + 2 k ^ ) \overrightarrow{R} = (\hat{i} - 2 \hat{j} + 0 \hat{k}) + (3 \hat{i} + 2 \hat{j} - \hat{k}) + (0 \hat{i} + 5 \hat{j} + 2 \hat{k}) R = ( i ^ β 2 j ^ β + 0 k ^ ) + ( 3 i ^ + 2 j ^ β β k ^ ) + ( 0 i ^ + 5 j ^ β + 2 k ^ )
Now, add the components:
R β = ( 1 + 3 + 0 ) i ^ + ( β 2 + 2 + 5 ) j ^ + ( 0 β 1 + 2 ) k ^ \overrightarrow{R} = (1 + 3 + 0) \hat{i} + (-2 + 2 + 5) \hat{j} + (0 - 1 + 2) \hat{k} R = ( 1 + 3 + 0 ) i ^ + ( β 2 + 2 + 5 ) j ^ β + ( 0 β 1 + 2 ) k ^
R β = 4 i ^ + 5 j ^ + k ^ \overrightarrow{R} = 4 \hat{i} + 5 \hat{j} + \hat{k} R = 4 i ^ + 5 j ^ β + k ^
Thus, the resultant force is:
R β = 4 i ^ + 5 j ^ + k ^ \overrightarrow{R} = 4 \hat{i} + 5 \hat{j} + \hat{k} R = 4 i ^ + 5 j ^ β + k ^
Step 3: Calculate the position vector A P β β \overrightarrow{A \vec{P}} A P
The displacement vector A P β β \overrightarrow{A \vec{P}} A P is found by subtracting the coordinates of point A ( 1 , 1 , 1 ) A(1, 1, 1) A ( 1 , 1 , 1 ) from the coordinates of point P ( 2 , 0 , 1 ) P(2, 0, 1) P ( 2 , 0 , 1 ) :
A P β β = P β A = ( 2 , 0 , 1 ) β ( 1 , 1 , 1 ) \overrightarrow{A \vec{P}} = P - A = (2, 0, 1) - (1, 1, 1) A P = P β A = ( 2 , 0 , 1 ) β ( 1 , 1 , 1 )
A P β β = ( 2 β 1 , 0 β 1 , 1 β 1 ) = ( 1 , β 1 , 0 ) \overrightarrow{A \vec{P}} = (2 - 1, 0 - 1, 1 - 1) = (1, -1, 0) A P = ( 2 β 1 , 0 β 1 , 1 β 1 ) = ( 1 , β 1 , 0 )
Thus, the position vector is:
A P β β = i ^ β j ^ \overrightarrow{A \vec{P}} = \hat{i} - \hat{j} A P = i ^ β j ^ β
Step 4: Calculate the moment of the resultant force
The moment of the resultant force about point A A A is given by the cross product:
M β = A P β β Γ R β \overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R} M = A P Γ R
Substitute the values of the position vector and the resultant force:
M β = β£ i ^ j ^ k ^ 1 β 1 04 5 1 β£ \overrightarrow{M} = \left| \begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}
1 & -1 & 0
4 & 5 & 1
\end{array} \right| M = β i ^ β j ^ β β k ^ 1 β β 1 β 04 β 5 β 1 β β
Now, expand the determinant:
M β = i ^ ( ( β 1 ) ( 1 ) β ( 0 ) ( 5 ) ) β j ^ ( ( 1 ) ( 1 ) β ( 0 ) ( 4 ) ) + k ^ ( ( 1 ) ( 5 ) β ( β 1 ) ( 4 ) ) \overrightarrow{M} = \hat{i} \left( (-1)(1) - (0)(5) \right) - \hat{j} \left( (1)(1) - (0)(4) \right) + \hat{k} \left( (1)(5) - (-1)(4) \right) M = i ^ ( ( β 1 ) ( 1 ) β ( 0 ) ( 5 ) ) β j ^ β ( ( 1 ) ( 1 ) β ( 0 ) ( 4 ) ) + k ^ ( ( 1 ) ( 5 ) β ( β 1 ) ( 4 ) )
Simplifying each term:
= i ^ ( β 1 β 0 ) β j ^ ( 1 β 0 ) + k ^ ( 5 + 4 ) = \hat{i} (-1 - 0) - \hat{j} (1 - 0) + \hat{k} (5 + 4) = i ^ ( β 1 β 0 ) β j ^ β ( 1 β 0 ) + k ^ ( 5 + 4 )
= β i ^ β j ^ + 9 k ^ = -\hat{i} - \hat{j} + 9 \hat{k} = β i ^ β j ^ β + 9 k ^
Thus, the moment of the resultant force about point A A A is:
M β = β i ^ β j ^ + 9 k ^ \overrightarrow{M} = -\hat{i} - \hat{j} + 9 \hat{k} M = β i ^ β j ^ β + 9 k ^
Moment of Force (Torque) :
M β = A P β β Γ R β \overrightarrow{M} = \overrightarrow{A \vec{P}} \times \overrightarrow{R} M = A P Γ R
The moment is the cross product of the displacement vector A P β β \overrightarrow{A \vec{P}} A P and the resultant force vector R β \overrightarrow{R} R .
Cross Product :
The cross product of two vectors A β = A x i ^ + A y j ^ + A z k ^ \vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} A = A x β i ^ + A y β j ^ β + A z β k ^ and B β = B x i ^ + B y j ^ + B z k ^ \vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} B = B x β i ^ + B y β j ^ β + B z β k ^ is calculated as:
A β Γ B β = ( A y B z β A z B y ) i ^ β ( A x B z β A z B x ) j ^ + ( A x B y β A y B x ) k ^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k} A Γ B = ( A y β B z β β A z β B y β ) i ^ β ( A x β B z β β A z β B x β ) j ^ β + ( A x β B y β β A y β B x β ) k ^
Summary of Steps
Calculate the resultant force R β \overrightarrow{R} R by adding the forces F 1 β , F 2 β , F 3 β \overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3} F 1 β β , F 2 β β , F 3 β β .
Find the displacement vector A P β β \overrightarrow{A \vec{P}} A P by subtracting the coordinates of point A A A from point P P P .
Compute the moment by taking the cross product of A P β β \overrightarrow{A \vec{P}} A P and R β \overrightarrow{R} R , yielding M β = β i ^ β j ^ + 9 k ^ \overrightarrow{M} = -\hat{i} - \hat{j} + 9 \hat{k} M = β i ^ β j ^ β + 9 k ^ .