Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-15

Question Statement

A force Fβ€Ύ=7i^+4j^βˆ’3k^\underline{F} = 7 \hat{i} + 4 \hat{j} - 3 \hat{k} is applied at point P(1,βˆ’2,3)P(1, -2, 3). Find its moment about the point Q(2,1,1)Q(2, 1, 1).


Background and Explanation

The moment of a force (or torque) about a point measures the rotational effect of that force relative to that point. The moment is calculated using the cross product of the position vector PQ→\overrightarrow{PQ} (from the point where the moment is to be calculated to the point where the force is applied) and the force vector F→\overrightarrow{F}.

The formula for the moment is:

M→=PQ→×F→\overrightarrow{M} = \overrightarrow{PQ} \times \overrightarrow{F}

Where:

  • PQβ†’\overrightarrow{PQ} is the displacement vector from point QQ to point PP,
  • Fβ†’\overrightarrow{F} is the force vector,
  • The cross product Γ—\times gives the moment vector.

Solution

Step 1: Define the given vectors

We are given the following information:

  • The force vector Fβ†’=7i^+4j^βˆ’3k^\overrightarrow{F} = 7 \hat{i} + 4 \hat{j} - 3 \hat{k},
  • Point P(1,βˆ’2,3)P(1, -2, 3) where the force is applied,
  • Point Q(2,1,1)Q(2, 1, 1) where we are calculating the moment.

Step 2: Calculate the displacement vector PQ→\overrightarrow{PQ}

The displacement vector PQβ†’\overrightarrow{PQ} is calculated by subtracting the coordinates of point Q(2,1,1)Q(2, 1, 1) from point P(1,βˆ’2,3)P(1, -2, 3):

PQβ†’=Pβˆ’Q=(1,βˆ’2,3)βˆ’(2,1,1)\overrightarrow{PQ} = P - Q = (1, -2, 3) - (2, 1, 1) PQβ†’=(1βˆ’2,βˆ’2βˆ’1,3βˆ’1)=(βˆ’1,βˆ’3,2)\overrightarrow{PQ} = (1 - 2, -2 - 1, 3 - 1) = (-1, -3, 2)

Thus, the displacement vector is:

PQβ†’=βˆ’i^βˆ’3j^+2k^\overrightarrow{PQ} = -\hat{i} - 3 \hat{j} + 2 \hat{k}

Step 3: Compute the cross product PQ→×F→\overrightarrow{PQ} \times \overrightarrow{F}

The moment is calculated by the cross product of PQ→\overrightarrow{PQ} and F→\overrightarrow{F}:

PQβ†’Γ—Fβ†’=∣i^j^k^βˆ’1βˆ’3274βˆ’3∣\overrightarrow{PQ} \times \overrightarrow{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} -1 & -3 & 2 7 & 4 & -3 \end{array} \right|

Now, expand the determinant:

PQβ†’Γ—Fβ†’=i^((βˆ’3)(βˆ’3)βˆ’(2)(4))βˆ’j^((βˆ’1)(βˆ’3)βˆ’(2)(7))+k^((βˆ’1)(4)βˆ’(βˆ’3)(7))\overrightarrow{PQ} \times \overrightarrow{F} = \hat{i} \left( (-3)(-3) - (2)(4) \right) - \hat{j} \left( (-1)(-3) - (2)(7) \right) + \hat{k} \left( (-1)(4) - (-3)(7) \right)

Simplifying each term:

=i^(9βˆ’8)βˆ’j^(3βˆ’14)+k^(βˆ’4+21)= \hat{i} (9 - 8) - \hat{j} (3 - 14) + \hat{k} (-4 + 21) =i^(1)βˆ’j^(βˆ’11)+k^(17)= \hat{i} (1) - \hat{j} (-11) + \hat{k} (17) =i^+11j^+17k^= \hat{i} + 11 \hat{j} + 17 \hat{k}

Thus, the moment of the force about point QQ is:

M→=i^+11j^+17k^\overrightarrow{M} = \hat{i} + 11 \hat{j} + 17 \hat{k}

Key Formulas or Methods Used

  • Moment of Force (Torque):
M→=PQ→×F→ \overrightarrow{M} = \overrightarrow{PQ} \times \overrightarrow{F}

The moment is the cross product of the displacement vector PQ→\overrightarrow{PQ} and the force vector F→\overrightarrow{F}.

  • Cross Product: The cross product of two vectors Aβƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} and Bβƒ—=Bxi^+Byj^+Bzk^\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} is calculated as:
Aβƒ—Γ—Bβƒ—=(AyBzβˆ’AzBy)i^βˆ’(AxBzβˆ’AzBx)j^+(AxByβˆ’AyBx)k^ \vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_y - A_y B_x) \hat{k}

Summary of Steps

  1. Calculate the displacement vector PQ→\overrightarrow{PQ} by subtracting the coordinates of point QQ from point PP.
  2. Compute the cross product PQ→×F→\overrightarrow{PQ} \times \overrightarrow{F} to find the moment of the force.
  3. Simplify the cross product to obtain the moment vector M→=i^+11j^+17k^\overrightarrow{M} = \hat{i} + 11 \hat{j} + 17 \hat{k}.