Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-4

Question Statement

We are tasked with finding the value of Ξ±\alpha such that the vectors a\mathbf{a}, b\mathbf{b}, and c\mathbf{c} are coplanar.

Part (i)

  • a=i^βˆ’j^+k^\mathbf{a} = \hat{i} - \hat{j} + \hat{k}
  • b=i^βˆ’2j^βˆ’3k^\mathbf{b} = \hat{i} - 2\hat{j} - 3\hat{k}
  • c=3i^βˆ’Ξ±j^+5k^\mathbf{c} = 3\hat{i} - \alpha \hat{j} + 5\hat{k}

Part (ii)

  • a=i^βˆ’2Ξ±j^+k^\mathbf{a} = \hat{i} - 2\alpha \hat{j} + \hat{k}
  • b=i^βˆ’j^+2k^\mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}
  • c=Ξ±i^βˆ’j^+k^\mathbf{c} = \alpha \hat{i} - \hat{j} + \hat{k}

We need to find Ξ±\alpha such that these vectors are coplanar.


Background and Explanation

Vectors are coplanar if the scalar triple product of the three vectors equals zero. The scalar triple product is given by:

aβ‹…(bΓ—c)=∣a1a2a3b1b2b3c1c2c3∣\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \left| \begin{array}{ccc} a_1 & a_2 & a_3 b_1 & b_2 & b_3 c_1 & c_2 & c_3 \end{array} \right|

If the determinant of this 3x3 matrix (the scalar triple product) is zero, the vectors are coplanar.


Solution

Part (i)

Given the vectors:

a=i^βˆ’j^+k^,b=i^βˆ’2j^βˆ’3k^,c=3i^βˆ’Ξ±j^+5k^\mathbf{a} = \hat{i} - \hat{j} + \hat{k}, \quad \mathbf{b} = \hat{i} - 2\hat{j} - 3\hat{k}, \quad \mathbf{c} = 3\hat{i} - \alpha \hat{j} + 5\hat{k}

We form the determinant for the scalar triple product:

∣1βˆ’111βˆ’2βˆ’33βˆ’Ξ±5∣=0\left| \begin{array}{ccc} 1 & -1 & 1 1 & -2 & -3 3 & -\alpha & 5 \end{array} \right| = 0

We now expand the determinant along the first row:

=1(βˆ£βˆ’2βˆ’3βˆ’Ξ±5∣)βˆ’(βˆ’1)(∣1βˆ’335∣)+1(∣1βˆ’23βˆ’Ξ±βˆ£)= 1 \left( \begin{vmatrix} -2 & -3 -\alpha & 5 \end{vmatrix} \right) - (-1) \left( \begin{vmatrix} 1 & -3 3 & 5 \end{vmatrix} \right) + 1 \left( \begin{vmatrix} 1 & -2 3 & -\alpha \end{vmatrix} \right)

Now, we compute the 2x2 determinants:

βˆ£βˆ’2βˆ’3βˆ’Ξ±5∣=(βˆ’2)(5)βˆ’(βˆ’3)(βˆ’Ξ±)=βˆ’10βˆ’3Ξ±\begin{vmatrix} -2 & -3 -\alpha & 5 \end{vmatrix} = (-2)(5) - (-3)(-\alpha) = -10 - 3\alpha ∣1βˆ’335∣=(1)(5)βˆ’(βˆ’3)(3)=5+9=14\begin{vmatrix} 1 & -3 3 & 5 \end{vmatrix} = (1)(5) - (-3)(3) = 5 + 9 = 14 ∣1βˆ’23βˆ’Ξ±βˆ£=(1)(βˆ’Ξ±)βˆ’(βˆ’2)(3)=βˆ’Ξ±+6\begin{vmatrix} 1 & -2 3 & -\alpha \end{vmatrix} = (1)(-\alpha) - (-2)(3) = -\alpha + 6

Substitute these into the determinant expression:

=1(βˆ’10βˆ’3Ξ±)+1(14)+1(βˆ’Ξ±+6)= 1(-10 - 3\alpha) + 1(14) + 1(-\alpha + 6) =βˆ’10βˆ’3Ξ±+14βˆ’Ξ±+6= -10 - 3\alpha + 14 - \alpha + 6 =10βˆ’4Ξ±= 10 - 4\alpha

For the vectors to be coplanar, the determinant must be zero:

10βˆ’4Ξ±=010 - 4\alpha = 0

Solving for Ξ±\alpha:

4Ξ±=10β‡’Ξ±=104=2.54\alpha = 10 \quad \Rightarrow \quad \alpha = \frac{10}{4} = 2.5

Part (ii)

Given the vectors:

a=i^βˆ’2Ξ±j^+k^,b=i^βˆ’j^+2k^,c=Ξ±i^βˆ’j^+k^\mathbf{a} = \hat{i} - 2\alpha \hat{j} + \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}, \quad \mathbf{c} = \alpha \hat{i} - \hat{j} + \hat{k}

We form the determinant for the scalar triple product:

∣1βˆ’2Ξ±βˆ’11βˆ’12Ξ±βˆ’11∣=0\left| \begin{array}{ccc} 1 & -2\alpha & -1 1 & -1 & 2 \alpha & -1 & 1 \end{array} \right| = 0

We now expand the determinant along the first row:

=1(βˆ£βˆ’12βˆ’11∣)βˆ’(βˆ’2Ξ±)(∣12Ξ±1∣)+(βˆ’1)(∣1βˆ’1Ξ±βˆ’1∣)= 1 \left( \begin{vmatrix} -1 & 2 -1 & 1 \end{vmatrix} \right) - (-2\alpha) \left( \begin{vmatrix} 1 & 2 \alpha & 1 \end{vmatrix} \right) + (-1) \left( \begin{vmatrix} 1 & -1 \alpha & -1 \end{vmatrix} \right)

Now, we compute the 2x2 determinants:

βˆ£βˆ’12βˆ’11∣=(βˆ’1)(1)βˆ’(2)(βˆ’1)=βˆ’1+2=1\begin{vmatrix} -1 & 2 -1 & 1 \end{vmatrix} = (-1)(1) - (2)(-1) = -1 + 2 = 1 ∣12Ξ±1∣=(1)(1)βˆ’(2)(Ξ±)=1βˆ’2Ξ±\begin{vmatrix} 1 & 2 \alpha & 1 \end{vmatrix} = (1)(1) - (2)(\alpha) = 1 - 2\alpha ∣1βˆ’1Ξ±βˆ’1∣=(1)(βˆ’1)βˆ’(βˆ’1)(Ξ±)=βˆ’1+Ξ±\begin{vmatrix} 1 & -1 \alpha & -1 \end{vmatrix} = (1)(-1) - (-1)(\alpha) = -1 + \alpha

Substitute these into the determinant expression:

=1(1)βˆ’(βˆ’2Ξ±)(1βˆ’2Ξ±)βˆ’1(βˆ’1+Ξ±)= 1(1) - (-2\alpha)(1 - 2\alpha) - 1(-1 + \alpha) =1+2Ξ±(1βˆ’2Ξ±)+(1βˆ’Ξ±)= 1 + 2\alpha(1 - 2\alpha) + (1 - \alpha) =1+2Ξ±βˆ’4Ξ±2+1βˆ’Ξ±= 1 + 2\alpha - 4\alpha^2 + 1 - \alpha =2+Ξ±βˆ’4Ξ±2= 2 + \alpha - 4\alpha^2

For the vectors to be coplanar, the determinant must be zero:

2+Ξ±βˆ’4Ξ±2=02 + \alpha - 4\alpha^2 = 0

Rearranging into a standard quadratic form:

4Ξ±2βˆ’Ξ±βˆ’2=04\alpha^2 - \alpha - 2 = 0

We solve this quadratic equation using the quadratic formula:

Ξ±=βˆ’(βˆ’1)Β±(βˆ’1)2βˆ’4(4)(βˆ’2)2(4)\alpha = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(4)(-2)}}{2(4)} Ξ±=1Β±1+328\alpha = \frac{1 \pm \sqrt{1 + 32}}{8} Ξ±=1Β±338\alpha = \frac{1 \pm \sqrt{33}}{8}

Thus, the two possible values for Ξ±\alpha are:

Ξ±=1+338orΞ±=1βˆ’338\alpha = \frac{1 + \sqrt{33}}{8} \quad \text{or} \quad \alpha = \frac{1 - \sqrt{33}}{8}

Key Formulas or Methods Used

  • Scalar Triple Product:
aβ‹…(bΓ—c)=∣a1a2a3b1b2b3c1c2c3∣ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \left| \begin{array}{ccc} a_1 & a_2 & a_3 b_1 & b_2 & b_3 c_1 & c_2 & c_3 \end{array} \right|
  • Quadratic Formula for solving quadratic equations.

Summary of Steps

  1. For part (i), set up the determinant for the scalar triple product and expand it.
  2. Solve the resulting equation to find Ξ±=2.5\alpha = 2.5.
  3. For part (ii), form and expand the determinant for the scalar triple product.
  4. Solve the resulting quadratic equation using the quadratic formula to find two possible values for Ξ±\alpha: 1+338\frac{1 + \sqrt{33}}{8} and 1βˆ’338\frac{1 - \sqrt{33}}{8}.