Question Statement
We are tasked with finding the value of Ξ± such that the vectors a, b, and c are coplanar.
Part (i)
- a=i^βj^β+k^
- b=i^β2j^ββ3k^
- c=3i^βΞ±j^β+5k^
Part (ii)
- a=i^β2Ξ±j^β+k^
- b=i^βj^β+2k^
- c=Ξ±i^βj^β+k^
We need to find Ξ± such that these vectors are coplanar.
Background and Explanation
Vectors are coplanar if the scalar triple product of the three vectors equals zero. The scalar triple product is given by:
aβ
(bΓc)=βa1ββa2ββa3βb1ββb2ββb3βc1ββc2ββc3βββ
If the determinant of this 3x3 matrix (the scalar triple product) is zero, the vectors are coplanar.
Solution
Part (i)
Given the vectors:
a=i^βj^β+k^,b=i^β2j^ββ3k^,c=3i^βΞ±j^β+5k^
We form the determinant for the scalar triple product:
β1ββ1β11ββ2ββ33ββΞ±β5ββ=0
We now expand the determinant along the first row:
=1(ββ2ββ3βΞ±β5ββ)β(β1)(β1ββ33β5ββ)+1(β1ββ23ββΞ±ββ)
Now, we compute the 2x2 determinants:
ββ2ββ3βΞ±β5ββ=(β2)(5)β(β3)(βΞ±)=β10β3Ξ±
β1ββ33β5ββ=(1)(5)β(β3)(3)=5+9=14
β1ββ23ββΞ±ββ=(1)(βΞ±)β(β2)(3)=βΞ±+6
Substitute these into the determinant expression:
=1(β10β3Ξ±)+1(14)+1(βΞ±+6)
=β10β3Ξ±+14βΞ±+6
=10β4Ξ±
For the vectors to be coplanar, the determinant must be zero:
10β4Ξ±=0
Solving for Ξ±:
4Ξ±=10βΞ±=410β=2.5
Part (ii)
Given the vectors:
a=i^β2Ξ±j^β+k^,b=i^βj^β+2k^,c=Ξ±i^βj^β+k^
We form the determinant for the scalar triple product:
β1ββ2Ξ±ββ11ββ1β2Ξ±ββ1β1ββ=0
We now expand the determinant along the first row:
=1(ββ1β2β1β1ββ)β(β2Ξ±)(β1β2Ξ±β1ββ)+(β1)(β1ββ1Ξ±ββ1ββ)
Now, we compute the 2x2 determinants:
ββ1β2β1β1ββ=(β1)(1)β(2)(β1)=β1+2=1
β1β2Ξ±β1ββ=(1)(1)β(2)(Ξ±)=1β2Ξ±
β1ββ1Ξ±ββ1ββ=(1)(β1)β(β1)(Ξ±)=β1+Ξ±
Substitute these into the determinant expression:
=1(1)β(β2Ξ±)(1β2Ξ±)β1(β1+Ξ±)
=1+2Ξ±(1β2Ξ±)+(1βΞ±)
=1+2Ξ±β4Ξ±2+1βΞ±
=2+Ξ±β4Ξ±2
For the vectors to be coplanar, the determinant must be zero:
2+Ξ±β4Ξ±2=0
Rearranging into a standard quadratic form:
4Ξ±2βΞ±β2=0
We solve this quadratic equation using the quadratic formula:
Ξ±=2(4)β(β1)Β±(β1)2β4(4)(β2)ββ
Ξ±=81Β±1+32ββ
Ξ±=81Β±33ββ
Thus, the two possible values for Ξ± are:
Ξ±=81+33ββorΞ±=81β33ββ
aβ
(bΓc)=βa1ββa2ββa3βb1ββb2ββb3βc1ββc2ββc3βββ
- Quadratic Formula for solving quadratic equations.
Summary of Steps
- For part (i), set up the determinant for the scalar triple product and expand it.
- Solve the resulting equation to find Ξ±=2.5.
- For part (ii), form and expand the determinant for the scalar triple product.
- Solve the resulting quadratic equation using the quadratic formula to find two possible values for Ξ±: 81+33ββ and 81β33ββ.