Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-8

Question Statement

A particle is acted upon by two constant forces: 4i^+j^βˆ’3k^4 \hat{i} + \hat{j} - 3 \hat{k} and 3i^βˆ’j^βˆ’k^3 \hat{i} - \hat{j} - \hat{k}. The particle moves from point A(1,2,3)A(1,2,3) to point B(5,4,1)B(5,4,1). Find the work done.


Background and Explanation

To calculate the work done by a force on an object, we use the formula:

W=Fβ€Ύβ‹…dβ€ΎW = \underline{F} \cdot \underline{d}

Where:

  • Fβ€Ύ\underline{F} is the total force vector,
  • dβ€Ύ\underline{d} is the displacement vector.

The displacement vector is found by subtracting the initial position vector AA from the final position vector BB. Additionally, when multiple forces act on an object, the total force is the vector sum of all the individual forces.


Solution

Step 1: Find the displacement vector dβ€Ύ\underline{d}

The displacement vector is calculated by subtracting the coordinates of point A(1,2,3)A(1,2,3) from point B(5,4,1)B(5,4,1):

dβ€Ύ=Bβˆ’A=(5,4,1)βˆ’(1,2,3)\underline{d} = B - A = (5, 4, 1) - (1, 2, 3) dβ€Ύ=(5βˆ’1,4βˆ’2,1βˆ’3)=(4,2,βˆ’2)\underline{d} = (5 - 1, 4 - 2, 1 - 3) = (4, 2, -2)

Thus, the displacement vector is:

dβ€Ύ=4i^+2j^βˆ’2k^\underline{d} = 4 \hat{i} + 2 \hat{j} - 2 \hat{k}

Step 2: Calculate the total force vector Fβ€Ύ\underline{F}

The total force is the sum of the individual forces Fβ€Ύ1=4i^+j^βˆ’3k^\underline{F}_1 = 4 \hat{i} + \hat{j} - 3 \hat{k} and Fβ€Ύ2=3i^βˆ’j^βˆ’k^\underline{F}_2 = 3 \hat{i} - \hat{j} - \hat{k}:

Fβ€Ύ=Fβ€Ύ1+Fβ€Ύ2=(4i^+j^βˆ’3k^)+(3i^βˆ’j^βˆ’k^)\underline{F} = \underline{F}_1 + \underline{F}_2 = (4 \hat{i} + \hat{j} - 3 \hat{k}) + (3 \hat{i} - \hat{j} - \hat{k}) Fβ€Ύ=(4+3)i^+(1βˆ’1)j^+(βˆ’3βˆ’1)k^=7i^+0j^βˆ’4k^\underline{F} = (4 + 3) \hat{i} + (1 - 1) \hat{j} + (-3 - 1) \hat{k} = 7 \hat{i} + 0 \hat{j} - 4 \hat{k}

Thus, the total force vector is:

Fβ€Ύ=7i^+0j^βˆ’4k^\underline{F} = 7 \hat{i} + 0 \hat{j} - 4 \hat{k}

Step 3: Calculate the work done

The work done is the dot product of the force vector Fβ€Ύ\underline{F} and the displacement vector dβ€Ύ\underline{d}:

W=Fβ€Ύβ‹…dβ€ΎW = \underline{F} \cdot \underline{d}

Substitute the components of the vectors:

W=(7i^+0j^βˆ’4k^)β‹…(4i^+2j^βˆ’2k^)W = (7 \hat{i} + 0 \hat{j} - 4 \hat{k}) \cdot (4 \hat{i} + 2 \hat{j} - 2 \hat{k})

Now, compute the individual terms of the dot product:

W=7(4)+0(2)+(βˆ’4)(βˆ’2)W = 7(4) + 0(2) + (-4)(-2) W=28+0+8=36W = 28 + 0 + 8 = 36

Thus, the work done is:

W=36,JoulesW = 36 , \text{Joules}

Key Formulas or Methods Used

  • Work Done by a Force:
W=Fβ€Ύβ‹…dβ€Ύ W = \underline{F} \cdot \underline{d}

Where Fβ€Ύ\underline{F} is the total force vector and dβ€Ύ\underline{d} is the displacement vector.

  • Displacement Vector:
dβ€Ύ=Bβˆ’A \underline{d} = B - A

Where AA and BB are the initial and final position vectors.

  • Total Force:
Fβ€Ύ=Fβ€Ύ1+Fβ€Ύ2 \underline{F} = \underline{F}_1 + \underline{F}_2

The total force is the sum of the individual forces acting on the object.


Summary of Steps

  1. Find the displacement vector: Subtract the coordinates of point AA from point BB to get the displacement vector dβ€Ύ\underline{d}.
  2. Calculate the total force vector: Add the individual force vectors Fβ€Ύ1\underline{F}_1 and Fβ€Ύ2\underline{F}_2 to get the total force vector Fβ€Ύ\underline{F}.
  3. Calculate the work done: Compute the dot product of the total force vector and the displacement vector to find the work done, which is 36,Joules36 , \text{Joules}.