Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

7.5 Q-9

Question Statement

A particle is displaced from point A(5,βˆ’5,βˆ’7)A(5, -5, -7) to point B(6,2,βˆ’2)B(6, 2, -2) under the action of three constant forces:

  1. F1=10i^βˆ’j^+11k^\mathbf{F_1} = 10 \hat{i} - \hat{j} + 11 \hat{k}
  2. F2=4i^+5j^+9k^\mathbf{F_2} = 4 \hat{i} + 5 \hat{j} + 9 \hat{k}
  3. F3=βˆ’2i^+j^βˆ’9k^\mathbf{F_3} = -2 \hat{i} + \hat{j} - 9 \hat{k}

Show that the total work done by these forces is 67 units.


Background and Explanation

To calculate the total work done by the forces, we use the formula:

W=Fβ‹…dW = \mathbf{F} \cdot \mathbf{d}

Where:

  • F\mathbf{F} is the total force vector, which is the sum of all individual forces,
  • d\mathbf{d} is the displacement vector, calculated by subtracting the initial position from the final position.

The displacement vector is found by subtracting the coordinates of AA from those of BB, and the total force is the vector sum of the individual forces.


Solution

Step 1: Find the total force vector F\mathbf{F}

The total force is the sum of the three forces F1\mathbf{F_1}, F2\mathbf{F_2}, and F3\mathbf{F_3}:

F=F1+F2+F3\mathbf{F} = \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3}

Substitute the given values:

F=(10i^βˆ’j^+11k^)+(4i^+5j^+9k^)+(βˆ’2i^+j^βˆ’9k^)\mathbf{F} = (10 \hat{i} - \hat{j} + 11 \hat{k}) + (4 \hat{i} + 5 \hat{j} + 9 \hat{k}) + (-2 \hat{i} + \hat{j} - 9 \hat{k})

Now, combine the components of the vectors:

F=(10+4βˆ’2)i^+(βˆ’1+5+1)j^+(11+9βˆ’9)k^\mathbf{F} = (10 + 4 - 2) \hat{i} + (-1 + 5 + 1) \hat{j} + (11 + 9 - 9) \hat{k} F=12i^+5j^+11k^\mathbf{F} = 12 \hat{i} + 5 \hat{j} + 11 \hat{k}

Thus, the total force vector is:

F=12i^+5j^+11k^\mathbf{F} = 12 \hat{i} + 5 \hat{j} + 11 \hat{k}

Step 2: Find the displacement vector d\mathbf{d}

The displacement vector is calculated by subtracting the coordinates of point A(5,βˆ’5,βˆ’7)A(5, -5, -7) from point B(6,2,βˆ’2)B(6, 2, -2):

d=Bβˆ’A=(6,2,βˆ’2)βˆ’(5,βˆ’5,βˆ’7)\mathbf{d} = B - A = (6, 2, -2) - (5, -5, -7) d=(6βˆ’5,2βˆ’(βˆ’5),βˆ’2βˆ’(βˆ’7))=(1,7,5)\mathbf{d} = (6 - 5, 2 - (-5), -2 - (-7)) = (1, 7, 5)

Thus, the displacement vector is:

d=i^+7j^+5k^\mathbf{d} = \hat{i} + 7 \hat{j} + 5 \hat{k}

Step 3: Calculate the work done

The work done is the dot product of the total force vector F\mathbf{F} and the displacement vector d\mathbf{d}:

W=Fβ‹…dW = \mathbf{F} \cdot \mathbf{d}

Substitute the components of the vectors:

W=(12i^+5j^+11k^)β‹…(i^+7j^+5k^)W = (12 \hat{i} + 5 \hat{j} + 11 \hat{k}) \cdot (\hat{i} + 7 \hat{j} + 5 \hat{k})

Now, compute the individual terms of the dot product:

W=12(1)+5(7)+11(5)W = 12(1) + 5(7) + 11(5) W=12+35+55=102W = 12 + 35 + 55 = 102

Thus, the total work done is:

W=102,unitsW = 102 , \text{units}

Key Formulas or Methods Used

  • Work Done by a Force:
W=Fβ‹…d W = \mathbf{F} \cdot \mathbf{d}

Where F\mathbf{F} is the total force vector and d\mathbf{d} is the displacement vector.

  • Total Force:
F=F1+F2+F3 \mathbf{F} = \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3}

The total force is the vector sum of the individual forces acting on the particle.

  • Displacement Vector:
d=Bβˆ’A \mathbf{d} = B - A

The displacement vector is obtained by subtracting the coordinates of point AA from those of point BB.


Summary of Steps

  1. Find the total force vector: Add the individual force vectors F1,F2,F3\mathbf{F_1}, \mathbf{F_2}, \mathbf{F_3} to get the total force vector F\mathbf{F}.
  2. Calculate the displacement vector: Subtract the coordinates of point AA from point BB to find the displacement vector d\mathbf{d}.
  3. Calculate the work done: Compute the dot product of the total force vector and the displacement vector to find the work done, which is 102,units102 , \text{units}.